98%
921
2 minutes
20
Some failures in ovary function, like folliculogenesis and oogenesis, can give rise to various infertility-associated problems, including polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). PCOS influences 8 to 20% of women; while POI occurs in at least 1% of all women. Regrettably, the current therapies for these diseases have not sufficiently been effective, and finding a suitable strategy is still a puzzle. One of the helpful strategies for managing and treating these disorders is understanding the contributing pathogenesis and mechanisms. Recently, it has been declared that abnormal expression of microRNAs (miRNAs), as a subset of non-coding RNAs, is involved in the pathogenesis of reproductive diseases. Among the miRNAs, the roles of miRNA-21 in the pathogenesis of PCOS and POI have been highlighted in some documents; hence, the purpose of this mini-review was to summarize the evidences in conjunction with the functions of this miRNA and other effective microRNAs in the normal or abnormal functions of the ovary (i.e., PCOS and POI) with a mechanistic insight.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875309 | PMC |
http://dx.doi.org/10.22074/ijfs.2023.1985792.1415 | DOI Listing |
PLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Molecular Medicine, Institute of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
Purpose: Calumenin (CALU) is a calcium-binding protein involved in several physiological processes, exhibiting tumor-specific expression variation and emerging as a potential player in cancer progression. This study aimed to investigate the correlation between CALU and clinicopathological features in breast cancer (BC) and perform a functional assessment of CALU based on a microRNA-mediated knockdown approach.
Methods: The BC tissues' CALU expression was measured by q-RT-PCR.
Biomed Hub
July 2025
Division of Cardiovascular Research, School of Medicine, University of Dundee, Dundee, UK.
Introduction: Micro-RNAs (miRNAs) participate in different biological processes, including fetal hypoxia. In this work, we aimed to evaluate the existence of a miRNA differential expression profile in maternal blood of pregnancies affected with late-onset fetal growth restriction (LO-FGR).
Methods: In a prospective study, a group of 35 fetuses were evaluated with Doppler ultrasound after 36 weeks.
Mediators Inflamm
September 2025
Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, Fujian, China.
Osteoporosis is a prevalent metabolic bone disorder with complex molecular underpinnings. Emerging evidence implicates endoplasmic reticulum stress (ERS) in its pathogenesis; however, systematic exploration of ERS-related genes (ERSRGs) remains limited. This study aimed to identify ERS-related differentially expressed genes (ERSRDEGs) in osteoporosis, construct a diagnostic model, and elucidate associated molecular mechanisms.
View Article and Find Full Text PDFOpen Med (Wars)
August 2025
Department of Gynecological Oncology, Tianjin Central Hospital of Gynecology and Obstetrics, No. 156, Nankai Sanma Road, Xingnan Street, Nankai District, Tianjin, 300100, China.
Background: The exosomal microRNAs (exomiRNAs) are promising novel biomarkers for clinical detection and prognosis assessment of human cancers. The aim of this study was to identify potential exomiRNAs as biomarkers in ovarian cancer (OC).
Methods: The candidate exomiRNAs were screened by analysis of GSE235525, GSE239685, and GSE216150 datasets and further validated in exosome samples from the serum of 61 patients with OC and OC cell lines by qPCR.