Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The organelle paralogy hypothesis (OPH) aims to explain the evolution of non-endosymbiotically derived organelles. It predicts that lineage-specific pathways or organelles should result when identity-encoding membrane-trafficking components duplicate and co-evolve. Here, we investigate the presence of such lineage-specific membrane-trafficking machinery paralogs in Apicomplexa, a globally important parasitic lineage. We are able to identify 18 paralogs of known membrane-trafficking machinery, in several cases co-incident with the presence of new endomembrane organelles in apicomplexans or their parent lineage, the Alveolata. Moreover, focused analysis of the apicomplexan Arf-like small GTPases (i.e., ArlX3) revealed a specific post-Golgi trafficking pathway. This pathway appears involved in delivery of proteins to micronemes and rhoptries, with knockdown demonstrating reduced invasion capacity. Overall, our data have identified an unforeseen post-Golgi trafficking pathway in apicomplexans and are consistent with the OPH mechanism acting to produce endomembrane pathways or organelles at various evolutionary stages across the alveolate lineage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.113740DOI Listing

Publication Analysis

Top Keywords

pathways organelles
8
membrane-trafficking machinery
8
post-golgi trafficking
8
trafficking pathway
8
evolutionary analysis
4
analysis identifies
4
identifies golgi
4
pathway
4
golgi pathway
4
pathway correlates
4

Similar Publications

Dynamic control of ciliary membrane protein content is crucial for the organelle's homeostasis and signaling function and involves removal of ciliary components by intraflagellar transport (IFT) and BBSome-mediated export, endocytic retrieval, and/or extracellular vesicle (EV) shedding. We report that the kinesin-3 motor KIF13B regulates ciliary protein composition and EV shedding in cultured kidney epithelial cells, with effects that vary over time. In early stages of ciliation, Kif13b cells aberrantly accumulate polycystin-2 (PC2) within cilia and release large EVs enriched with CCDC198 and the centriole distal appendage protein CCDC92, which also localizes to the ciliary tip.

View Article and Find Full Text PDF

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Microscopic examination of biopsy tissues remains essential for cancer diagnosis, despite advancements in sequencing technologies. Alterations in nuclear size or the nuclear-to-cytoplasmic ratio are hallmark features of cancer cells and often correlate with disease progression. However, the mechanisms underlying nuclear size abnormalities and their impact on tumor progression remain unclear.

View Article and Find Full Text PDF

Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF