A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Microporous Multi-Cage Metal-Organic Framework for an Effective One-Step Separation of Branched Alkanes Feeds. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The improvement of the Total Isomerization Process (TIP) for the production of high-quality gasoline with the ultimate goal of reaching a Research Octane Number (RON) higher than 92 requires the use of specific sorbents to separate pentane and hexane isomers into classes of linear, mono- and di-branched isomers. Herein we report the design of a new multi-cage microporous Fe(III)-MOF (referred to as MIP-214, MIP stands for materials of the Institute of Porous Materials of Paris) with a flu-e topology, incorporating an asymmetric heterofunctional ditopic ligand, 4-pyrazolecarboxylic acid, that exhibits an appropriate microporous structure for a thermodynamic-controlled separation of hydrocarbon isomers. This MOF produced via a direct, scalable, and mild synthesis route was proven to encompass a unique separation of C5/C6 isomers by classes of low RON over high RON alkanes with a sorption hierarchy: (n-hexane≫n-pentane≈2-methylpentane>3-methylpentane)≫(2,3-dimethylbutane≈i-pentane≈2,2-dimethylbutane) following the adsorption enthalpy sequence. We reveal for the first time that a single sorbent can efficiently separate such a complex mixture of high RON di-branched hexane and mono-branched pentane isomers from their low RON counterparts, which is a major achievement reported so far.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202320008DOI Listing

Publication Analysis

Top Keywords

isomers classes
8
low ron
8
high ron
8
ron
5
isomers
5
microporous multi-cage
4
multi-cage metal-organic
4
metal-organic framework
4
framework effective
4
effective one-step
4

Similar Publications