A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electrokinetic Analyses Uncover the Rate-Determining Step of Biomass-Derived Monosaccharide Electroreduction on Copper. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrochemical biomass conversion holds promise to upcycle carbon sources and produce valuable products while reducing greenhouse gas emissions. To this end, deep insight into the interfacial mechanism is essential for the rational design of an efficient electrocatalytic route, which is still an area of active research and development. Herein, we report the reduction of dihydroxyacetone (DHA)-the simplest monosaccharide derived from glycerol feedstock-to acetol, the vital chemical intermediate in industries, with faradaic efficiency of 85±5 % on a polycrystalline Cu electrode. DHA reduction follows preceding dehydration by coordination with the carbonyl and hydroxyl groups and the subsequent hydrogenation. The electrokinetic profile indicates that the rate-determining step (RDS) includes a proton-coupled electron transfer (PCET) to the dehydrated intermediate, revealed by coverage-dependent Tafel slope and isotopic labeling experiments. An approximate zero-order dependence of H suggests that water acts as the proton donor for the interfacial PCET process. Leveraging these insights, we formulate microkinetic models to illustrate its origin that Eley-Rideal (E-R) dominates over Langmuir-Hinshelwood (L-H) in governing Cu-mediated DHA reduction, offering rational guidance that increasing the concentration of the adsorbed reactant alone would be sufficient to promote the activity in designing practical catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202401602DOI Listing

Publication Analysis

Top Keywords

rate-determining step
8
dha reduction
8
electrokinetic analyses
4
analyses uncover
4
uncover rate-determining
4
step biomass-derived
4
biomass-derived monosaccharide
4
monosaccharide electroreduction
4
electroreduction copper
4
copper electrochemical
4

Similar Publications