Ultrasmall Nanoparticles Regulate Immune Microenvironment by Activating IL-33/ST2 to Alleviate Renal Ischemia-Reperfusion Injury.

Adv Healthc Mater

Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Renal ischemia-reperfusion injury (IRI) is a common disease with high morbidity and mortality. Renal IRI can cause the disorder of immune microenvironment and reprograming the immune microenvironment to alleviate excessive inflammatory response is crucial for its treatment. Cytokine IL-33 can improve the immune inflammatory microenvironment by modulating both innate and adaptive immune cells, and serve as an important target for modulating immune microenvironment of renal IRI. Herein, we report that bilobetin-functionalized ultrasmall Cu Se nanoparticles (i.e., CSPB NPs) can activate the PKA/p-CREB/IL-33/ST2 signaling pathway to regulate innate and adaptive immune cells for reprograming the immune microenvironment of IRI-induced acute kidney injury. The biocompatible CSPB NPs can promote the polarization of M1-like macrophages into M2-like macrophages, and the expansion of ILC2 and Treg cells by activating IL-33/ST2 to modulate the excessive immune inflammatory response of renal IRI. More importantly, they can rapidly accumulate at the injured kidney to significantly alleviate IRI. This work demonstrates that modulating the expression of cytokines to reprogram immune microenvironment has great potential in the treatment of renal IRI and other ischemic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202303276DOI Listing

Publication Analysis

Top Keywords

immune microenvironment
24
renal iri
16
immune
10
ultrasmall nanoparticles
8
activating il-33/st2
8
renal ischemia-reperfusion
8
ischemia-reperfusion injury
8
reprograming immune
8
inflammatory response
8
immune inflammatory
8

Similar Publications

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.

View Article and Find Full Text PDF

Pancreatic cancer is a highly aggressive malignancy with a dismal prognosis, characterized by a complex tumor microenvironment that promotes immunosuppression and limits the efficacy of immune checkpoint blockade (ICB) therapy. Fibroblast activation protein (FAP) is overexpressed in the tumor stroma and represents a promising target for therapeutic intervention. Here, we developed a novel antibody-drug conjugate (ADC) targeting FAP, and investigated its anti-tumor activity and ability to enhance ICB efficacy in pancreatic cancer.

View Article and Find Full Text PDF

Targeted hotspot profiling reveals a functionally relevant mutation in bladder cancer.

Urol Oncol

September 2025

Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:

Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.

Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.

View Article and Find Full Text PDF

Prostate cancer (PC) is notoriously known for exhibiting an immunologically cold phenotype in the tumor immune microenvironment (TIME), leading to the need for interventions to enhance immunotherapy efficacy. Recent findings by Zhao in the identified stromal monoamine oxidase A (MAOA), a key enzyme that degrades monoamine neurotransmitters and plays a role in the neuroendocrine system, as a critical regulator of the immune response to PC. Altering MAOA levels in myofibroblastic cancer-associated fibroblasts, either genetically or pharmacologically, can reprogram PC's TIME to modulate CD8 T cell-mediated cytotoxicity through the WNT5A-Ca²-NFATC1 signaling axis, highlighting the stromal influences on CD8 T cell cytotoxic activity within the TIME.

View Article and Find Full Text PDF