98%
921
2 minutes
20
Cholinergic regulation of hippocampal theta oscillations has long been proposed to be a potential mechanism underlying hippocampus-dependent memory encoding processes. However, cholinergic transmission has been traditionally associated with type II theta under urethane anesthesia. The mechanisms and behavioral significance of cholinergic regulation of type I theta in freely exploring animals is much less clear. In this study, we examined the potential behavioral significance of cholinergic regulation of theta oscillations in the object location task in male mice that involves training and testing trials and provides an ideal behavioral task to study the underlying memory encoding and retrieval processes, respectively. Cholinergic regulation of hippocampal theta oscillations and the behavioral outcomes was examined by either intrahippocampal infusion of cholinergic receptor antagonists or knocking out cholinergic receptors in excitatory neurons or interneurons. We found that both muscarinic acetylcholine receptors (mAChRs) and α7 nicotinic AChRs (α7 nAChRs) regulated memory encoding by engaging excitatory neurons and interneurons, respectively. There is a transient upregulated theta oscillation at the beginning of individual object exploration events that only occurred in the training trials, but not in the testing trials. This transient upregulated theta is also the only theta component that significantly differed between training and testing trials and was sensitive to mAChR and α7 nAChR antagonists. Thus, our study has revealed a transient cholinergic-sensitive theta component that is specifically associated with memory encoding, but not memory retrieval, in the object location task, providing direct experimental evidence supporting a role for cholinergic-regulated theta oscillations in hippocampus-dependent memory encoding processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957210 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1313-23.2024 | DOI Listing |
J Neurosci
September 2025
Department of Bioengineering, George Mason University, Fairfax, VA, United States,
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice of both sexes.
View Article and Find Full Text PDFPerfusion
September 2025
Cardiac Surgery Department, Bristol Royal Children's Hospital, Bristol, UK.
BackgroundDuring cardiopulmonary bypass (CPB), goal-directed perfusion (GDP) seeks to match oxygen delivery to metabolic demand, but the dynamics of oxygen extraction and intraoperative oxygen demand remain poorly understood, especially in paediatric populations. Existing models rely on limited data and assume, for example, a linear relationship between log oxygen demand and temperature.MethodsWe developed GARIX (Global AutoRegressive Integrated model with eXogenous variables and an equilibrium force) to predict minute-by-minute changes in oxygen extraction ratio (OER) using high-resolution intraoperative data.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un
Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.
View Article and Find Full Text PDFBlood Adv
September 2025
BC Cancer, Vancouver, British Columbia, Canada.
Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.
View Article and Find Full Text PDFElife
September 2025
Center for Mind and Brain, University of California, Davis, Davis, United States.
Visual search relies on the ability to use information about the target in working memory to guide attention and make target-match decisions. The 'attentional' or 'target' template is thought to be encoded within an inferior frontal junction (IFJ)-visual attentional network. While this template typically contains veridical target features, behavioral studies have shown that target-associated information, such as statistically co-occurring object pairs, can also guide attention.
View Article and Find Full Text PDF