98%
921
2 minutes
20
Exploring room-temperature intrinsic magnetism in two-dimensional (2D) materials for nanoscale spintronic devices has garnered significant interest. Achieving a high Curie temperature and substantial spin polarization in 2D ferromagnetic materials remains challenging. Drawing inspiration from the substantial enhancement of the Curie temperature observed in ferromagnetic CrIS monolayers by manipulating the covalent nature of Cr-S bonds, our study systematically delves into the electronic structure and magnetic properties of Janus MXY (M = V, Cr, Mn, Fe, and Co; X = Cl, Br, I; Y = S, Se, and Te) monolayers through first-principles calculations. Our findings reveal that 15 kinds of these monolayers exhibit dynamic and thermodynamic stability while displaying diverse electronic and ferromagnetic characteristics. Notably, MnIS demonstrates half-metallicity and in-plane magnetic anisotropy, while CrISe exhibits a half-semiconductor and perpendicular magnetic anisotropy. Consequently, MnIS transforms from in-plane to perpendicular magnetic anisotropy through strain manipulation. CrISe, under strain, transforms from a half-semiconductor to a bipolar magnetic semiconductor. The strong coupling caused by the M-Y bonds makes them have a Curie temperature higher than room temperature. The unique magnetic properties exhibited by the 2D Janus MnIS and CrISe magnets hold promise for applications in spintronics. Our study provides a foundational understanding for future experimental explorations in this exciting research area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c16448 | DOI Listing |
Anal Methods
September 2025
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
A novel magnetic nanostructured molecularly imprinted polymer probe (FeO@MIP) was developed for the continuous detection of Ti/Fe. The synthesis employed 50 nm FeO nanoparticles as the core matrix, with Ti and Fe serving as template molecules. Functional monomers α-methylacrylic acid (MAA) and acrylamide (AM) were used, along with ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent and 2,2'-azobisisobutyronitrile (AIBN) as the polymerization initiator, utilizing a microwave-assisted procedure.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, IIT Kharagpur, Kharagpur, 721302, India.
The solid-solution alloys of Mn-Zn-Ga and Mn-Zn-Sn have been synthesized by a high-temperature method and structurally characterized by X-ray diffraction studies. The substitutional solid-solution alloys that crystallize in the chiral space group 432 or 432 adopt the A13-type structure (β-Mn). Similar to β-Mn, the 20 atoms in the cubic unit cell are distributed over 8 and 12 Wyckoff positions.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Owing to their distinctive thickness and physical attributes, two-dimensional (2D) materials have exhibited considerable promise in the field of microelectronic devices. Notably, 2D magnetic materials that maintain long-range magnetic order and can be readily modulated by external fields have garnered substantial attention. However, CrSBr, despite being a 2D van der Waals (vdW) semiconducting magnet with an appropriate band gap and stability in air, faces significant hindrance for practical utilization due to its Curie temperature () of 146 K.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institution Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanoscience), Madrid, 28049, Spain.
Achieving magnetic ordering in low-dimensional materials remains a key objective in the field of magnetism. Herein, coordination chemistry emerges as a powerful discipline to promote the stabilization of magnetism at the nanoscale. We present a thorough study of exemplary two-dimensional metal-organic nanoarchitectures synthesized on a Au(111) substrate, which are rationalized by using surface-science techniques and theoretical calculations.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry and Key Laboratory of Rare Earth Chemistry of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China.
Constructing structurally sophisticated molecules with interesting properties is the goal of supramolecular chemistry. Herein, two heterometallic clusters, formulated respectively as [GdNi(μ-CO)(μ-NO)(μ-OH)(μ-OH)(μ-CO)(HO)]Cl·49HO·90MeOH (, H = -methyliminodiacetic acid) and [TbNi(μ-CO)(μ-NO)(μ-OH)(μ-OH)(HO)]Cl·50HO·130MeOH (), were obtained by the cohydrolysis of Ln (Ln = Gd, Tb) and Ni in the presence of H and triethylamine. The essentially isostructural cationic cluster cages are constructed by coexisting pentagons and hexagons whose formation is respectively templated by nitrate and oxalate ions.
View Article and Find Full Text PDF