Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The relationship between the fluctuation in body size and brain health is poorly understood. This study aimed to examine the associations of long-term variability in body mass index (BMI) and waist-to-hip ratio (WHR) with neuroimaging metrics that approximate brain health.

Methods: This cohort study recruited 1114 participants aged 25-83 years from a multicenter, community-based cohort study in China. We modeled the BMI and WHR trajectories of participants during 2006-2018 and assessed the BMI and WHR variability (direction and speed of change) by calculating the slope. Generalized linear models were applied to investigate the associations of BMI and WHR variability with MRI markers of brain tissue volume, white matter microstructural integrity, white matter hyperintensity (WMH), and cerebral small vessel disease (CSVD).

Findings: Progressive weight gain during follow-up was associated with lower global fractional anisotropy (beta = -0.18, 95% confidence interval [CI] -0.34 to -0.02), higher mean diffusivity (beta = 0.15, 95% CI 0.01-0.30) and radial diffusivity (beta = 0.17, 95% CI 0.02-0.32). Weight loss was also associated with a lower burden of periventricular WMH (beta = -0.26, 95% CI -0.48 to -0.03) and a lower risk of moderate-to-severe basal ganglia enlarged perivascular spaces (BG-EPVS, odds ratio [OR] = 0.41, 95% CI 0.20-0.83). Among overweight populations, weight loss was linked with smaller volumes of WMH (beta = -0.47, 95% CI -0.79 to -0.15), periventricular WMH (beta = -0.57, 95% CI -0.88 to -0.26), and deep WMH (beta = -0.36, 95% CI -0.69 to -0.03), as well as lower risk of CSVD (OR = 0.22, 95% CI 0.08-0.62), lacune (OR = 0.12, 95% CI 0.01-0.91) and moderate-to-severe BG-EPVS (OR = 0.24, 95% CI 0.09-0.61). In adults with central obesity, WHR loss was positively associated with larger gray matter volume (beta = 0.50, 95% CI 0.11-0.89), hippocampus volume (beta = 0.62, 95% CI 0.15-1.09), and parahippocampal gyrus volume (beta = 0.85, 95% CI 0.34-1.37). The sex-stratification and age-stratification analyses revealed similar findings with the main results, with the pattern of associations significantly presented in the individuals at mid-life and late-life.

Interpretation: Long-term stability of BMI level is essential for maintaining brain health. Progressive weight gain is associated with impaired white matter microstructural integrity. Weight and WHR losses are associated with improved general brain health. Our results contribute to a better understanding of the integrated associations between variations in obesity measures and brain health.

Funding: This study was supported by grants No. 62171297 (Han Lv) and 61931013 (Zhenchang Wang) from the National Natural Science Foundation of China, No. 7242267 from the Beijing Natural Science Foundation (Han Lv), and No. [2015] 160 from the Beijing Scholars Program (Zhenchang Wang).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848022PMC
http://dx.doi.org/10.1016/j.lanwpc.2024.101015DOI Listing

Publication Analysis

Top Keywords

brain health
16
95%
14
cohort study
12
bmi whr
12
white matter
12
variability body
8
body size
8
neuroimaging metrics
8
whr variability
8
matter microstructural
8

Similar Publications

Article Synopsis
  • A study evaluated the impacts of divalproex sodium on brain volumes in patients with mild to moderate Alzheimer’s disease using MRI scans over 24 months.
  • The results indicated that participants receiving divalproex experienced a significantly higher decline in hippocampal and brain volumes compared to those on placebo, along with a faster decline in cognitive function as measured by the Mini-Mental State Examination.
  • The findings suggest that divalproex treatment is linked to accelerated brain volume loss and potentially increased cognitive impairment, although the long-term effects remain unclear.
View Article and Find Full Text PDF
Article Synopsis
  • The study tested whether divalproex sodium (valproate) could prevent or delay agitation and psychosis in individuals with moderate Alzheimer's disease, enrolling 313 participants.
  • After two years of treatment, results showed no significant difference between the valproate and placebo groups regarding the time to development of agitation or psychosis.
  • Additionally, the valproate group experienced more side effects and showed greater reductions in brain volume, indicating potential adverse effects of the treatment.
View Article and Find Full Text PDF

Objective: To delineate the trajectories of Aβ42 level in cerebrospinal fluid (CSF), fludeoxyglucose F18 (FDG) uptake using positron emission tomography, and hippocampal volume using magnetic resonance imaging and their relative associations with cognitive change at different stages in aging and Alzheimer disease (AD).

Design: Cohort study.

Setting: The 59 study sites for the Alzheimer's Disease Neuroimaging Initiative.

View Article and Find Full Text PDF