Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Undefined epigenetic programs act to probabilistically silence individual autosomal alleles, generating unique individuals, even from genetic clones. This sort of random monoallelic expression can explain variation in traits and diseases that differences in genes and environments cannot. Here, we developed the nematode to study monoallelic expression in whole tissues, and defined a developmental genetic regulation pathway. We found maternal H3K9 histone methyltransferase (HMT) SET-25/SUV39/G9a works with HPL-2/HP1 and LIN-61/L3MBTL2 to randomly silence alleles in the intestinal progenitor E-cell of 8-cell embryos to cause monoallelic expression. SET-25 was antagonized by another maternal H3K9 HMT, MET-2/SETDB1, which works with LIN-65/ATF7ZIP and ARLE-14/ARL14EP to prevent monoallelic expression. The HMT-catalytic SET domains of both MET-2 and SET-25 were required for regulating monoallelic expression. Our data support a model wherein SET-25 and MET-2 regulate histones during development to generate patterns of somatic monoallelic expression that are persistent but not heritable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10849558PMC
http://dx.doi.org/10.1101/2024.01.22.576748DOI Listing

Publication Analysis

Top Keywords

monoallelic expression
28
maternal h3k9
8
monoallelic
7
expression
7
maternal histone
4
histone methyltransferases
4
methyltransferases antagonistically
4
antagonistically regulate
4
regulate monoallelic
4
expression undefined
4

Similar Publications

The mammary gland, which primarily develops postnatally, undergoes significant changes during pregnancy and lactation to facilitate milk production. Through the generation and analysis of 480 transcriptomes, we provide the most detailed allelic expression map of the mammary gland, cataloguing cell-type-specific expression from ex-vivo purified cell populations over 10 developmental stages, enabling comparative analysis. The work identifies genes involved in the mammary gland cycle, parental-origin-specific and genetic background-specific expression at cellular and temporal resolution, genes associated with human lactation disorders and breast cancer.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNA with their cognate amino acids, an essential step in protein biosynthesis. While biallelic mutations in aaRSs often result in severe multi-organ dysfunction accompanied by developmental delays, monoallelic mutations typically cause milder, tissue-specific symptoms. However, a de novo monoallelic nonsense mutation (R534*) in the asparaginyl-tRNA synthetase (AsnRS)-resulting in a premature stop codon and 15-residue C-terminal truncation-has been identified in multiple families and is associated with severe neurodevelopmental symptoms.

View Article and Find Full Text PDF

Diverse epigenetic regulatory mechanisms ensure and regulate cellular diversity. Among others, the histone 3 lysine 9 me3 (H3K9me3) post translational modification participates in silencing lineage-inappropriate genes. H3K9me3 restricts access of transcription factors and other regulatory proteins to cell-fate controlled genes.

View Article and Find Full Text PDF

Autosomal monoallelic gene expression and asynchronous replication between alleles are well-established features of imprinted genes and genes regulated by allelic exclusion. Inactivation/Stability Centers (I/SCs) are recently described autosomal loci that exhibit epigenetic regulation of allelic expression and replication timing, with differences that can be comparable to those observed between the active and inactive X chromosomes . Here we characterize hundreds of autosomal loci with allele-specific epigenetic regulation of replication timing and gene expression, defining them as I/SCs.

View Article and Find Full Text PDF

The RNA-binding protein TRIM71 is essential for brain development, and recent genetic studies in humans have identified as a risk gene for congenital hydrocephal-us (CH). Here, we show that monoallelic missense mutations in are associated with hearing loss (HL) and inner ear aplasia in humans. Utilizing conditional knockout mice carrying a CH and HL-associated mutation, we demonstrate that loss of TRIM71 function during early otic development (embryonic day 9 to 10) causes severe HL.

View Article and Find Full Text PDF