98%
921
2 minutes
20
Background And Aims: Recent developments in high-throughput proteomic technologies enable the discovery of novel biomarkers of coronary atherosclerosis. The aims of this study were to test if plasma protein subsets could detect coronary artery calcifications (CAC) in asymptomatic individuals and if they add predictive value beyond traditional risk factors.
Methods: Using proximity extension assays, 1,342 plasma proteins were measured in 1,827 individuals from the Impaired Glucose Tolerance and Microbiota (IGTM) study and 883 individuals from the Swedish Cardiopulmonary BioImage Study (SCAPIS) aged 50-64 years without history of ischaemic heart disease and with CAC assessed by computed tomography. After data-driven feature selection, extreme gradient boosting machine learning models were trained on the IGTM cohort to predict the presence of CAC using combinations of proteins and traditional risk factors. The trained models were validated in SCAPIS.
Results: The best plasma protein subset (44 proteins) predicted CAC with an area under the curve (AUC) of 0.691 in the validation cohort. However, this was not better than prediction by traditional risk factors alone (AUC = 0.710, P = .17). Adding proteins to traditional risk factors did not improve the predictions (AUC = 0.705, P = .6). Most of these 44 proteins were highly correlated with traditional risk factors.
Conclusions: A plasma protein subset that could predict the presence of subclinical CAC was identified but it did not outperform nor improve a model based on traditional risk factors. Thus, support for this targeted proteomics platform to predict subclinical CAC beyond traditional risk factors was not found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ahj.2024.01.011 | DOI Listing |
Am J Emerg Med
September 2025
University of Toronto, Rotman School of Management, Canada.
Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.
Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.
Turk J Pediatr
September 2025
Division of Allergy and Asthma, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye.
Animal allergens, particularly those from cats, dogs, and horses, are significant risk factors for the development of allergic diseases in childhood. Managing animal allergies requires allergen avoidance and, when this is not feasible, specific immunotherapy. Patient history remains the cornerstone of diagnosis, providing the foundation for diagnostic algorithms.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Economics, Cornell University, Ithaca, United States of America.
In this paper, we study the impact of momentum, volume and investor sentiment on U.S. tech sector stock returns using Principal Component Analysis-Hidden Markov Model (PCA-HMM) methodology.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Capturing the dynamic changes in patients' internal states as they approach death due to fatal diseases remains a major challenge in understanding individual pathologies and improving end-of-life care. However, existing methods primarily focus on specific test values or organ dysfunction markers, failing to provide a comprehensive view of the evolving internal state preceding death. To address this, we analyzed electronic health record (EHR) data from a single institution, including 8,976 cancer patients and 77 laboratory parameters, by constructing continuous mortality prediction models based on gradient-boosting decision trees and leveraging them for temporal analyses.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America.
Background: Statin therapy lowers the risk of major adverse cardiovascular events (MACE) among people with HIV (PWH). Residual risk pathways contributing to excess MACE beyond low-density lipoprotein cholesterol (LDL-C) are not well understood. Our objective was to evaluate the association of statin responsive and other inflammatory and metabolic pathways to MACE in the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE).
View Article and Find Full Text PDF