Comparison and analysis of soil microbial communities in organic and conventional paddy fields by farming season.

Environ Res

Department of Environment Science, Kangwon National University, Chuncheon, Kangwon-do, 24341, Republic of Korea; School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, Kangwon-do, 24341, Republic of Korea. Electronic address:

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interest in soil health and biodiversity conservation has become increasingly important. Consequently, studies comparing the chemical and biological characteristics of organic and traditional paddy soils have been increasing. Soil microorganisms are essential in nutrient cycling; however, their diversity is challenging to ascertain because of their environmental sensitivity and complex interactions. Particularly, in domestic rice cultivation, the soil undergoes multiple irrigation and drainage processes during crop growth, providing a diverse ecological environment for soil microorganisms. The objective of this study is to compare the microbial community and diversity between paddy soils in two agricultural systems. We selected organic and conventional paddy fields in Yangpyeong, Gyeonggi Province, and collected monthly samples from August to November 2022 for analysis. Bacteria and fungi were amplified from the 16S rRNA V3V4 region, ITS 3-4 region respectively, For the comparison of microbial diversity, Alpha diversity indices (Chao1, Shannon, Gini-Simpson indices) were analyzed. The results indicated genus-level differences in microbial communities, with the genera Mucor and Sirastachys exclusively present in organic paddy soils, while the genus Ustilaginoidea was exclusively found in conventional paddy soils. Among them, Ustilaginoidea is reported to be a fungus causing false smut disease, causing damage to crop growth and quality. Additionally, the comparison of microbial diversity between the two farming showed no significant differences (p>0.05). In conclusion, When the microbial communities present in both farming systems were examined, organic farming appeared to be more advantageous than conventional farming regarding crop disease and health. This study provides essential soil chemical and microbiological data for understanding the fundamental characteristics of paddy soils in South Korea.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118341DOI Listing

Publication Analysis

Top Keywords

paddy soils
20
microbial communities
12
conventional paddy
12
organic conventional
8
paddy fields
8
soil microorganisms
8
crop growth
8
comparison microbial
8
microbial diversity
8
paddy
7

Similar Publications

Ferrihydrite level in paddy soil affects inorganic arsenic species in rice grains.

Environ Sci Process Impacts

September 2025

Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.

Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Fe-modified biochar-driven ROS generation in the rhizosphere and their role in microplastic transformation.

J Hazard Mater

September 2025

State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation

Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).

View Article and Find Full Text PDF

Elevated salinity amplifies polyethylene microplastic-induced soil nitrous oxide emissions.

J Hazard Mater

August 2025

Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; State Key Laboratory of Green and Efficient Development of

Microplastics (MPs) have been shown to enhance nitrous oxide (NO) emissions and soil salinization potentially amplifying this effect. This study investigated the individual and combined impacts of polyethylene (PE) MPs and salinity on NO emissions from paddy soils, while simultaneously analyzing related microbial parameters. MPs significantly increased cumulative NO emissions by 9.

View Article and Find Full Text PDF

Integration of diverse fertilisation strategies with water-saving irrigation techniques presents a promising sustainable agricultural practice, offering the potential to reduce greenhouse gases (GHGs) emissions, enhance carbon sequestration and boost crop yields. However, existing research on the influence of soil microorganisms on biogeochemical processes of GHGs is limited. Herein, we explored the microbial mechanisms influencing GHGs emissions through a 3-year field experiment and metagenomic sequencing conducted in southeastern China.

View Article and Find Full Text PDF