Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882425PMC
http://dx.doi.org/10.1016/j.cell.2024.01.024DOI Listing

Publication Analysis

Top Keywords

synthetic differentiation
8
differentiation circuit
8
circuit escherichia
8
escherichia coli
8
differentiation
5
circuit
4
coli suppressing
4
suppressing mutant
4
mutant takeover
4
takeover differentiation
4

Similar Publications

Evaluating anti-LGBTQIA+ medical bias in large language models.

PLOS Digit Health

September 2025

Department of Dermatology, Stanford University, Stanford, California, United States of America.

Large Language Models (LLMs) are increasingly deployed in clinical settings for tasks ranging from patient communication to decision support. While these models demonstrate race-based and binary gender biases, anti-LGBTQIA+ bias remains understudied despite documented healthcare disparities affecting these populations. In this work, we evaluated the potential of LLMs to propagate anti-LGBTQIA+ medical bias and misinformation.

View Article and Find Full Text PDF

Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.

View Article and Find Full Text PDF

Poly(γ-stearyl-l-glutamate) (PSLG) is a semiflexible synthetic polypeptide that forms both thermotropic and lyotropic liquid crystal (LC) phases. We previously showed that spherical nanoparticles (NPs) decorated with another semiflexible helical polymer, poly(hexyl isocyanate), form lyotropic nematic rather than cubic LC phases. In this work, PSLG ligands for functionalizing 4 nm ZrO NPs were prepared via N-carboxyanhydride ring-opening polymerization.

View Article and Find Full Text PDF

The purpose of this study was to explore the effects of changing the digestible energy (DE) level of the diet on the growth performance, intestinal function, carcass traits, meat quality and blood biochemical indices of Ningxiang pigs, and to comprehensively identify the lipid molecules in the abdominal fat of Ningxiang pigs through lipidomics technology to evaluate the pork quality. The experiment selected 225 castrated Ningxiang pigs (47.64 ± 0.

View Article and Find Full Text PDF

Influence of Plant Species and De-Icing Salt on Microbial Communities in Bioretention.

Environ Microbiol Rep

October 2025

École d'urbanisme et d'architecture de paysage, Faculté de l'aménagement, Université de Montréal, Montréal, Québec, Canada.

Bioretention (BR) systems are green infrastructures used to manage runoff even in cold climates. Bacteria and fungi play a role in BR's performance. This mesocosm study investigated the influence of plant species and de-icing salt on the diversity, the community composition, and the differential abundance of bacteria and fungi in BR.

View Article and Find Full Text PDF