Climate change and its effects on body size and shape: the role of endocrine mechanisms.

Philos Trans R Soc Lond B Biol Sci

Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, Fargo, ND 58102, USA.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In many organisms, rapidly changing environmental conditions are inducing dramatic shifts in diverse phenotypic traits with consequences for fitness and population viability. However, the mechanisms that underlie these responses remain poorly understood. Endocrine signalling systems often influence suites of traits and are sensitive to changes in environmental conditions; they are thus ideal candidates for uncovering both plastic and evolved consequences of climate change. Here, we use body size and shape, a set of integrated traits predicted to shift in response to rising temperatures with effects on fitness, and insulin-like growth factor-1 as a case study to explore these ideas. We review what is known about changes in body size and shape in response to rising temperatures and then illustrate why endocrine signalling systems are likely to be critical in mediating these effects. Lastly, we discuss research approaches that will advance understanding of the processes that underlie rapid responses to climate change and the role endocrine systems will have. Knowledge of the mechanisms involved in phenotypic responses to climate change will be essential for predicting both the ecological and the long-term evolutionary consequences of a warming climate. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838645PMC
http://dx.doi.org/10.1098/rstb.2022.0509DOI Listing

Publication Analysis

Top Keywords

climate change
16
body size
12
size shape
12
role endocrine
8
environmental conditions
8
endocrine signalling
8
signalling systems
8
response rising
8
rising temperatures
8
responses climate
8

Similar Publications

As the global urban heat island (UHI) effect intensifies, understanding how UHI intensity responds to its influencing factors changes is critical for designing effective mitigation strategies. We focused on global megacities, shifted the UHI intensity assessment from physical indicators to human-related parameters, and then evaluated how human-centered UHI intensity responded to influencing factor change. We verified a significant discrepancy between traditional UHI intensity and human-centered UHI intensity worldwide, an average absolute difference of 1.

View Article and Find Full Text PDF

Wetlands and their aquatic arthropods are threatened by climate change (temperature, precipitation). In this review, we first synthesize the literature on environmental controls on wetland arthropods (hydroperiod, temperature, dissolved oxygen) and then assess how these controls operate across freshwater wetlands from different global biomes (tropical/subtropical, temperate, high latitude/altitude, and dry climates) and how changes in climates alter arthropod fauna with consequent modifications to wetland ecosystem functions (decomposition, food web dynamics). We also describe ways to develop bioassessment of climate change impacts on wetlands.

View Article and Find Full Text PDF

Climate change is expected to pose significant threats to public health, particularly vector-borne diseases. Despite dramatic recent increases in dengue that many anecdotally connect with climate change, the effect of anthropogenic climate change on dengue remains poorly quantified. To assess this link, we assembled local-level data on dengue across 21 countries in Asia and the Americas.

View Article and Find Full Text PDF

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF