Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

COVID-19, known as Coronavirus Disease 2019 primarily targets the respiratory system and can impact the cardiovascular system, leading to a range of cardiorespiratory complications. The current forefront in analyzing the dynamical characteristics of physiological systems and aiding clinical decision-making involves the integration of entropy-based complexity techniques with artificial intelligence. Entropy-based measures offer promising prospects for identifying disturbances in cardiorespiratory control system (CRCS) among COVID-19 patients by assessing the oxygen saturation variability (OSV) signals. In this investigation, we employ scale-based entropy (SBE) methods, including multiscale entropy (MSE), multiscale permutation entropy (MPE), and multiscale fuzzy entropy (MFE), to characterize the dynamical characteristics of OSV signals. These measurements serve as features for the application of traditional machine learning (ML) and deep learning (DL) approaches in the context of classifying OSV signals from COVID-19 patients during their illness and subsequent recovery. We use the Beurer PO-80 pulse oximeter which non-invasively acquired OSV and pulse rate data from COVID-19 infected patients during the active infection phase and after a two-month recovery period. The dataset comprises of 88 recordings collected from 44 subjects(26 men and 18 women), both during their COVID-19 illness and two months post-recovery. Prior to analysis, data preprocessing is performed to remove artifacts and outliers. The application of SBE measures to OSV signals unveils a reduction in signal complexity during the course of COVID-19. Leveraging these SBE measures as feature sets, we employ two DL techniques, namely the radial basis function network (RBFN) and RBFN with dynamic delay algorithm (RBFNDDA), for the classification of OSV data collected during and after COVID-19 recovery. To evaluate the classification performance, we employ standard metrics such as sensitivity, specificity, false positive rate (FPR), and the area under the receiver operator characteristic curve (AUC). Among the three scale-based entropy measures, MFE outperformed MSE and MPE by achieving the highest classification performance using RBFN with 13 best features having sensitivity (0.84), FPR (0.30), specificity (0.70) and AUC (0.77). The outcomes of our study demonstrate that SBE measures combined with DL methods offer a valuable approach for categorizing OSV signals obtained during and after COVID-19, ultimately aiding in the detection of CRCS dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108032DOI Listing

Publication Analysis

Top Keywords

osv signals
20
dynamical characteristics
12
sbe measures
12
covid-19
9
entropy measures
8
deep learning
8
analyzing dynamical
8
cardiorespiratory control
8
control system
8
covid-19 patients
8

Similar Publications

Purpose: Shu-Feng-Jie-Biao formula (SFJBF) has been used to treat acute respiratory infections for a dozen years. This study aimed to explore its mechanisms and effects for the treatment of influenza.

Methods: Network pharmacology was used to explore the underlying mechanism of SFJBF against influenza.

View Article and Find Full Text PDF

Modulation of visual attention in the Visual World Paradigm relies on parallel processing of linguistic and visual information. Previous studies have argued that the human linguistic capacity includes an aspect of anticipation of upcoming material. Such anticipation can be triggered by both lexical and grammatical/morphosyntactic cues.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) is a respiratory illness that leads to severe acute respiratory syndrome and various cardiorespiratory complications, contributing to morbidity and mortality. Entropy analysis has demonstrated its ability to monitor physiological states and system dynamics during health and disease. The main objective of the study is to extract information about cardiorespiratory control by conducting a complexity analysis of OSV signals using scale-based entropy measures following a two-month timeframe after recovery.

View Article and Find Full Text PDF

COVID-19, known as Coronavirus Disease 2019 primarily targets the respiratory system and can impact the cardiovascular system, leading to a range of cardiorespiratory complications. The current forefront in analyzing the dynamical characteristics of physiological systems and aiding clinical decision-making involves the integration of entropy-based complexity techniques with artificial intelligence. Entropy-based measures offer promising prospects for identifying disturbances in cardiorespiratory control system (CRCS) among COVID-19 patients by assessing the oxygen saturation variability (OSV) signals.

View Article and Find Full Text PDF

An aim of the analysis of biomedical signals such as heart rate variability signals, brain signals, oxygen saturation variability (OSV) signals, etc., is for the design and development of tools to extract information about the underlying complexity of physiological systems, to detect physiological states, monitor health conditions over time, or predict pathological conditions. Entropy-based complexity measures are commonly used to quantify the complexity of biomedical signals; however novel complexity measures need to be explored in the context of biomedical signal classification.

View Article and Find Full Text PDF