CAMTA3 repressor destabilization triggers TIR domain protein TN2-mediated autoimmunity in the Arabidopsis exo70B1 mutant.

Plant Cell

State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Calcium-dependent protein kinases (CPKs) can decode and translate intracellular calcium signals to induce plant immunity. Mutation of the exocyst subunit gene EXO70B1 causes autoimmunity that depends on CPK5 and the Toll/interleukin-1 receptor (TIR) domain resistance protein TIR-NBS2 (TN2), where direct interaction with TN2 stabilizes CPK5 kinase activity. However, how the CPK5-TN2 interaction initiates downstream immune responses remains unclear. Here, we show that, besides CPK5 activity, the physical interaction between CPK5 and functional TN2 triggers immune activation in exo70B1 and may represent reciprocal regulation between CPK5 and the TIR domain functions of TN2 in Arabidopsis (Arabidopsis thaliana). Moreover, we detected differential phosphorylation of the calmodulin-binding transcription activator 3 (CAMTA3) in the cpk5 background. CPK5 directly phosphorylates CAMTA3 at S964, contributing to its destabilization. The gain-of-function CAMTA3A855V variant that resists CPK5-induced degradation rescues immunity activated through CPK5 overexpression or exo70B1 mutation. Thus, CPK5-mediated immunity is executed through CAMTA3 repressor degradation via phosphorylation-induced and/or calmodulin-regulated processes. Conversely, autoimmunity in camta3 also partially requires functional CPK5. While the TIR domain activity of TN2 remains to be tested, our study uncovers a TN2-CPK5-CAMTA3 signaling module for exo70B1-mediated autoimmunity, highlighting the direct embedding of a calcium-sensing decoder element within resistance signalosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062451PMC
http://dx.doi.org/10.1093/plcell/koae036DOI Listing

Publication Analysis

Top Keywords

tir domain
16
cpk5
9
camta3 repressor
8
cpk5 tir
8
camta3
5
tn2
5
repressor destabilization
4
destabilization triggers
4
tir
4
triggers tir
4

Similar Publications

Regulated cell death in fungi from a comparative immunology perspective.

Cell Death Differ

September 2025

State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

The death of fungal cells has been studied in a variety of contexts including responses to antifungal drugs, during fungal developmental processes, in response to bacterial or mycoviral fungal pathogens, and during non-self-recognition between distinct strains of the same species (allorecognition). Some of the genetic determinants and molecular mechanisms of fungal cell death processes are now beginning to be understood in detail. Recent advances have uncovered fungal cell death machinery that shares ancestry with key actors of immune cell death in other eukaryotic and prokaryotic taxa.

View Article and Find Full Text PDF

Algal blooms and their demise by viruses drive global-scale ecological processes in the ocean. These blooms form the foundation of marine food webs, regulate microbial communities, and shape biogeochemical cycles. Although algal populations are constantly infected by viruses, resistant subpopulations frequently emerge after the infection.

View Article and Find Full Text PDF

SARM1 activation promotes axonal degeneration via a two-step phase transition.

Nat Chem Biol

August 2025

Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.

SARM1 is a key executioner of axonal degeneration, acting through NAD⁺ depletion by NADase activity of its TIR domain. Although normally autoinhibited, SARM1 becomes activated in response to axonal damage; however, the underlying mechanism remains unclear. Here, using a class of pyridine-containing compounds that trigger SARM1-dependent axon degeneration, we uncover a two-step activation process.

View Article and Find Full Text PDF

Background: Charcot-Marie-Tooth (CMT) disease can be caused by mutations in over 100 different genes, most of which lead to demyelination (type 1) or degeneration (type 2) of peripheral motor and sensory axons. SARM1 is a protein involved in the active process of Wallerian degeneration after axonal injury. Inhibition of SARM1 protects against axon degeneration following injury or in cases such as chemotherapy-induced peripheral neuropathy.

View Article and Find Full Text PDF

Introduction: Toll-like receptors (TLRs) are critical components of innate immunity, recognizing microbe-derived molecules and triggering pro-inflammatory cytokine production for pathogen clearance. However, TLR hyperactivation can cause excessive inflammation, contributing to disorders such as sepsis. Thus, modulating TLR signalling is a promising therapeutic strategy.

View Article and Find Full Text PDF