98%
921
2 minutes
20
Bandgap-tuneable mixed-halide 3D perovskites are of interest for multi-junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed-halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed-halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra. In particular, it has been suggested that there is a preference for occupation of the distinct axial and equatorial halide sites in mixed-halide 2D perovskites. Pb NMR can be used to probe the atomic-scale structure of lead-halide materials, but although the isotropic Pb shift is sensitive to halide stoichiometry, it cannot distinguish configurational isomers. Here, we use 2D isotropic-anisotropic correlation Pb NMR and relativistic DFT calculations to distinguish the [PbX ] configurations in mixed iodide-bromide 3D FAPb(Br I ) perovskites and 2D BA Pb(Br I ) perovskites based on formamidinium (FA ) and butylammonium (BA ), respectively. We find that iodide preferentially occupies the axial site in BA-based 2D perovskites, which may explain the suppressed halide mobility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202314856 | DOI Listing |
J Chem Phys
September 2025
Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-Ku, Yokohama 236-0027, Kanagawa, Japan.
Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Chemistry of OrganoMetallic Compounds (ICCOM), National Research Council of Italy (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
Mixed-halide perovskites of formula MAPb(BrI), where MA is methylammonium, are of great interest for optoelectronic applications (particularly high-efficiency solar cells) due to their finely tunable bandgap, which enables precise control over light absorption. However, their stability remains a critical challenge, notably due to reversible photoinduced halide segregation. Under continuous illumination, this process leads to the formation of Br- and I-rich domains, which lower device performance by introducing low-bandgap regions that trap charge carriers.
View Article and Find Full Text PDFDigit Discov
August 2025
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Electrical and Microengineering (IEM), Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab) Rue de la Maladière 71b Neuchâtel 2000 Switzerland
The fine-tuning of halide perovskite materials for both performance and stability calls for innovative tools that streamline high-throughput experimentation. Here, we present two complementary systems designed to accelerate the development of solution-processed thin-film semiconductors. HITSTA (High-Throughput Stability Testing Apparatus) is a robust, cost-effective platform for optical characterization and accelerated aging, built around a repurposed 3D printer.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, PR China.
The unprecedented growth in information across diverse media drives an urgent need for multifunctional materials and devices beyond conventional electrical paradigms. This work explores all-optical information processing based on photoluminescence functions using smart phosphor. The developed composite phosphor of mixed-halide perovskite embedded macroporous YO:Eu exhibits adaptive photoluminescence variations with neuromorphic characteristics.
View Article and Find Full Text PDFLangmuir
August 2025
School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China.
Mixed halide perovskite CsPbBrI nanocrystal (NC) films exhibit viable application prospects in pure red perovskite light-emitting diodes (PeLEDs). However, intrinsic environmental instability, defects, and spectral instabilities are always present in pure red perovskites under mixing halide ion exchange processing. In this work, we developed a swelling method for the preparation of stable pure red light emission Zn: CsPbBrI-PVDF films by post-treatment with CsBr-ZnI at room temperature.
View Article and Find Full Text PDF