A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering advancements in microfluidic systems for enhanced mixing at low Reynolds numbers. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mixing within micro- and millichannels is a pivotal element across various applications, ranging from chemical synthesis to biomedical diagnostics and environmental monitoring. The inherent low Reynolds number flow in these channels often results in a parabolic velocity profile, leading to a broad residence time distribution. Achieving efficient mixing at such small scales presents unique challenges and opportunities. This review encompasses various techniques and strategies to evaluate and enhance mixing efficiency in these confined environments. It explores the significance of mixing in micro- and millichannels, highlighting its relevance for enhanced reaction kinetics, homogeneity in mixed fluids, and analytical accuracy. We discuss various mixing methodologies that have been employed to get a narrower residence time distribution. The role of channel geometry, flow conditions, and mixing mechanisms in influencing the mixing performance are also discussed. Various emerging technologies and advancements in microfluidic devices and tools specifically designed to enhance mixing efficiency are highlighted. We emphasize the potential applications of micro- and millichannels in fields of nanoparticle synthesis, which can be utilized for biological applications. Additionally, the prospects of machine learning and artificial intelligence are offered toward incorporating better mixing to achieve precise control over nanoparticle synthesis, ultimately enhancing the potential for applications in these miniature fluidic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10827338PMC
http://dx.doi.org/10.1063/5.0178939DOI Listing

Publication Analysis

Top Keywords

micro- millichannels
12
mixing
10
advancements microfluidic
8
low reynolds
8
mixing micro-
8
residence time
8
time distribution
8
enhance mixing
8
mixing efficiency
8
potential applications
8

Similar Publications