98%
921
2 minutes
20
Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099296 | PMC |
http://dx.doi.org/10.1093/hmg/ddae013 | DOI Listing |
BMC Mol Cell Biol
September 2025
School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.
View Article and Find Full Text PDFbioRxiv
August 2025
Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
Microtubules in cells have complex and developmentally stereotyped posttranslational modifications that support diverse processes such as cell division, ciliary growth and axonal specification. Glycylation, the addition of glycines, singly (monoglycylation) or in chains (polyglycylation), is primarily found on axonemal microtubules where it functions in cilia maintenance and motility. It is catalyzed by three enzymes in the tubulin tyrosine ligase-like family, TTLL3, 8 and 10.
View Article and Find Full Text PDFMicrotubules perform a variety of cellular functions including regulation of mitotic cell division, cilia formation, and neurite extension. Post-translational modifications controlled by the TTLL-family of enzymes confer a host of properties that affect microtubule dynamics and function. Specifically, polyglutamylation of tubulin C-terminal tails plays an important role in regulating microtubule dynamics and function within specific cellular contexts.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
July 2025
Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Post-translational modifications (PTMs) to tubulin subunits in microtubule filaments are thought to comprise a component of the tubulin code that specifies microtubule functions in cell physiology and animal development. Acetylation of Lysine-40 (K40) on α-tubulin (αTub-K40ac) and glutamylation of both α- and β-tubulin are two tubulin PTMs of interest to the field. Antibodies that recognize these PTMs have been indispensable tools to study the localization of these PTMs as well as their biological functions.
View Article and Find Full Text PDFJ Proteome Res
August 2025
Institut Pasteur, Université de Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, Paris 75015, France.
Tubulin polyglutamylation is a key feature of eukaryotic cilia and flagella that is essential for their function. The diversity of enzymes catalyzing polyglutamylation with different specificities inspired the hypothesis of the tubulin code. In the protist parasite , nine different glutamylase enzymes are potentially involved in tubulin glutamylation.
View Article and Find Full Text PDF