Novel Local-Chiral Metamaterial: Effective Modulation of Amplitude & Phase for Wideband Polarization-Insensitive Absorption.

ACS Appl Mater Interfaces

China-Blarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect, Taiyuan 030032, People's Republic of China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metamaterial has received widespread research in the fields of electromagnetic stealth due to its characteristics of strong resonance and flexible designability. However, a lack of a comprehensive understanding of the internal physical mechanism still imposes certain limitations on broadband absorption designs. Hence, this work proposes a new strategy for the broadening of the working frequency band of metamaterial absorbers by constructing local-chiral features to regulate the amplitude and phase information. The absorber consists of staggered cut-wire metal patterns with lumped resistors placed at the center position determined by characteristic mode analysis. Combining the modal significance, equivalent circuit, surface current, electric field distribution, and symmetry model theory, the working mechanism for wideband absorption performance has been analyzed in detail. The experimental results are in good agreement with the simulation results; the absorption rate exceeds 82% in the frequency range of 4.5-11.7 GHz and surpasses about 90% in the frequency range of 4.7-10.8 GHz under transverse electric (TE) or transverse-magnetic (TM) polarizations. Compared to the case without chiral features, the proposed design can achieve a 28% increase in operating bandwidth. The proposed design method is applicable for the optimization of various typical dipole-type metamaterial absorbers and provides a novel strategy for future wideband metamaterial absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c17546DOI Listing

Publication Analysis

Top Keywords

amplitude phase
8
metamaterial absorbers
8
frequency range
8
proposed design
8
metamaterial
5
absorption
5
novel local-chiral
4
local-chiral metamaterial
4
metamaterial effective
4
effective modulation
4

Similar Publications

RF phase modulation improves quantitative transient state sequences under constrained conditions.

MAGMA

September 2025

Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Heidelberglaan 100, 3585CX, Utrecht, The Netherlands.

Objective: Within gradient-spoiled transient-state MR sequences like Magnetic Resonance Fingerprinting or Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT), it is examined whether an optimized RF phase modulation can help to improve the precision of the resulting relaxometry maps.

Methods: Using a Cramer-Rao based method called BLAKJac, optimized sequences of RF pulses have been generated for two scenarios (amplitude-only modulation and amplitude + phase modulation) and for several conditions. These sequences have been tested on a phantom, a healthy human brain and a healthy human leg, to reconstruct parametric maps ( and ) as well as their standard deviations.

View Article and Find Full Text PDF

Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics.

Light Sci Appl

September 2025

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.

Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.

View Article and Find Full Text PDF

The tracking umbrella: Diverse interpretations under a common neural term.

Ann N Y Acad Sci

September 2025

BCBL, Basque Center on Cognition, Brain and Language, Donostia, Spain.

Neural tracking, the alignment of brain activity with the temporal dynamics of sensory input, is a crucial mechanism underlying perception, attention, and cognition. While this concept has gained prominence in research on speech, music, and visual processing, its definition and methodological approaches remain heterogeneous. This paper critically examines neural tracking from both theoretical and methodological perspectives, highlighting how its interpretation varies across studies.

View Article and Find Full Text PDF

On-Chip Emitter-Coupled Meta-Optics for Versatile Photon Sources.

Phys Rev Lett

August 2025

University of Southern Denmark, Centre for Nano Optics, Campusvej 55, Odense M DK-5230, Denmark.

Controlling the spontaneous emission of nanoscale quantum emitters (QEs) is crucial for developing advanced photon sources required in many areas of modern nanophotonics, including quantum information technologies. Conventional approaches to shaping photon emission are based on using bulky configurations, while approaches recently developed in quantum metaphotonics suffer from limited capabilities in achieving desired polarization states and directionality, failing to provide on-demand photon sources tailored precisely to technological needs. Here, we propose a universal approach to designing versatile photon sources using on-chip QE-coupled meta-optics that enable direct transformations of QE-excited surface plasmon polaritons into spatially propagating photon streams with arbitrary polarization states, directionality, and amplitudes via both resonance and geometric phases supplied by scattering meta-atoms.

View Article and Find Full Text PDF

The coupling of lasers plays an important role in a variety of research activities, from generating high-power lasers to investigating out-of-equilibrium coupled systems. This Letter presents our investigations of Hermitian coupling in arrays of lasers, where it is possible to control both the amplitude and phase of the coupling and generate artificial gauge fields. The Hermitian coupling is demonstrated in three laser array geometries: a square array of 100 lasers with controlled laser coupling for obtaining continuous control over the phase-locked state, a triangular array of 130 lasers with controlled chirality of the lasers, and a ring array of eight lasers with a controlled topological charge.

View Article and Find Full Text PDF