Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: Stereo matching is a crucial technology in the binocular laparoscopic-based surgical navigation systems. In recent years, neural networks have been widely applied to stereo matching and demonstrated outstanding performance. however, this method heavily relies on manual feature engineering meaning that professionals must be involved in the feature extraction and matching. This process is both time-consuming and demands specific expertise.
Methods: This paper introduces a novel stereo matching framework DCStereo that realizes a fully automatic neural architecture design for the stereo matching of binocular laparoscopic images. The proposed framework utilizes a densely connected search space which enables a more flexible and diverse architecture composition. Furthermore, the proposed algorithm leverages the channel and path sampling strategies to reduce memory consumption during searching.
Results: Empirically, our searched DCStereo on the SCARED training dataset achieves a mean absolute error of 3.589 mm on the test dataset, which outperforms hand-crafted stereo matching methods and other approaches. Furthermore, when directly testing on the SERV-CT dataset, our DCStereo demonstrates better generalization ability than other methods.
Conclusion: Our proposed approach leverages the neural architecture search technique and a densely connected search space for automatic neural architecture design in stereo matching of binocular laparoscopic images. Our method delivers advanced performance on the SCARED dataset and promising results on the SERV-CT dataset. These findings demonstrate the potential of our approach for improving clinical surgical navigation systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-023-03035-5 | DOI Listing |