98%
921
2 minutes
20
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by persistent hypoxemia and an uncontrolled inflammatory response. Valsartan, an angiotensin II type 1 receptor antagonist, is clinically used to treat hypertension and has anti-inflammatory and antioxidant effects on gefitinib-induced pneumonia in rats. However, the potential therapeutic effects of valsartan on lipopolysaccharide (LPS)-induced ALI remain unclear. This study investigated the protective role of valsartan in LPS-induced ALI and its underlying mechanisms. LPS-treated BEAS-2B cells and ALI mouse model were established. BEAS-2B cells were treated with LPS (10 μg/mL) for 24h, with or without valsartan (20, 40, and 80 µM). For ALI mouse models, LPS (5 mg/kg) was administered through intratracheal injection to treat the mice for 24h, and valsartan (10 or 30 mg/kg) was injected intraperitoneally twice 2 h before and 12 h after the LPS injection. Pulmonary functional parameters were examined by an EMKA pulmonary system. Hematoxylin and eosin staining, flow cytometry, CCK-8 assay, qRT-PCR, ELISA, immunofluorescence, Western blotting, and related commercial kits were used to assess the pathological damage to the lungs, neutrophil recruitment in the lung tissue and bronchoalveolar lavage fluid (BALF), cell viability, inflammation, oxidative activity, and mucus production, respectively. Potential mechanisms were further explored using network pharmacology and Western blotting. Valsartan rescued LPS-reduced cell viability of BEAS-2B cells, improved the pulmonary function, ameliorated pathological lung injury in mice with ALI, ameliorated LPS-induced neutrophil recruitment in BALF and lung tissue of mice, attenuated oxidative stress by increasing the level of SOD and decreasing that of MDA and GSSG, inhibited LPS-induced MUC5AC overproduction, decreased the LPS-induced increase in expression of pro-inflammatory cytokines/chemokines including TNF-α, IL-6, IL-1β, CXCL-1 and CXCL-2, and restored the expression of anti-inflammatory IL-10. Mechanistic studies showed that valsartan inhibits LPS-induced phosphorylation of nuclear factor-kappa B (NF-κΒ) and mitogen-activated protein kinases (MAPKs) including P38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in both LPS-treated cells and the mouse model of ALI. Valsartan protects against LPS-induced ALI by attenuating oxidative stress, reducing MUC5AC production, and attenuating the inflammatory response that may involve MAPK and NF-κΒ pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822936 | PMC |
http://dx.doi.org/10.3389/fphar.2024.1321095 | DOI Listing |
Allergol Immunopathol (Madr)
September 2025
Department of Respiratory and Critical Care Medicine, the Wenzhou Central Hospital and Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Background: Acute lung injury (ALI) is a critical clinical condition with high mortality, necessitating the development of more effective therapeutic strategies. Rho Guanine nucleotide dissociation inhibitor (GDP) beta (ARHGDIB) has been shown to exert protective effects against noxious stimuli in various disease models.
Objective: In this study, we investigated whether ARHGDIB knockdown had a protective effect on lipopolysaccharide (LPS)-induced injury in alveolar epithelial cells and elucidated its underlying molecular mechanisms.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Pathology, First Clinical College, Changzhi Medical College, Changzhi 046000.
Objectives: Acute lung injury (ALI) is an acute respiratory failure syndrome characterized by impaired gas exchange. Due to the lack of effective targeted drugs, it is associated with high mortality and poor prognosis. (TW) has demonstrated anti-inflammatory activity in the treatment of various diseases.
View Article and Find Full Text PDFMol Cell Neurosci
September 2025
Biomedical and Forensic Science, School of Human Sciences, University of Derby, Derby, DE22 1GB, United Kingdom; Life and Health Sciences, University of Roehampton, London, SW15 5PH, United Kingdom. Electronic address:
Emerging evidence indicates that apelin, an adipokine, plays a critical role in numerous biological functions and may hold potential for therapeutic applications; however, its efficacy is constrained by rapid plasma degradation. Thus, the search for novel apelin analogues with reduced susceptibility to plasma degradation is ongoing. We have previously shown novel modified apelin-13 analogues, providing exciting opportunities for potential therapeutic development against Alzheimer's disease.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of TCM, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:
Ethnopharmacological Relevance: Acute lung injury is one of the most fatal lung diseases and has a significant impact on mortality and morbidity. Currently, ALI treatment options remain limited. Pegaeophyton scapiflorum (DHJ) has been documented in Dumu Materia Medica, as clearing heat from the lungs, and are clinically used for respiratory disorders.
View Article and Find Full Text PDFCitri Sarcodactylis Fructus (CSF), an ornamental and edible fruit belonging to the genus in the family, has been shown to exhibit anti-inflammatory, antioxidant, and anti-obesity effects. However, its impact on the progression of acute lung injury (ALI) remains unclear. In this study, CSF significantly alleviated LPS-induced pulmonary edema in ALI mice and improved oxidative stress markers, as evidenced by reduced serum malondialdehyde (MDA) levels and increased serum superoxide dismutase (SOD) levels.
View Article and Find Full Text PDF