Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Erb-b2 receptor tyrosine kinase 2 (ERBB2)-activating mutations are therapeutically actionable alterations found in various cancers, including metastatic breast cancer (MBC). We developed multiplex digital PCR assays to detect and quantify ERBB2 mutations in circulating tumor DNA from liquid biopsies. We studied the plasma from 272 patients with hormone-receptor-positive, human epidermal growth factor receptor 2-negative (HR+/HER2-) MBC to detect 17 ERBB2 mutations using a screening assay. The assay was developed on the three-color Crystal dPCR™ naica® platform with a two-step strategy for precise mutation identification. We found that nine patients (3.3%) harbored at least one ERBB2 mutation. The mutation rate was higher in patients with lobular histology (5.9%) compared to invasive breast carcinoma of no special type (2.6%). A total of 12 mutations were found with the following frequencies: L755S (25.00%), V777L (25.00%), S310Y (16.67%), L869R (16.67%), S310F (8.33%), and D769H (8.33%). Matched tumor samples from six patients identified the same mutations with an 83% concordance rate. In summary, our highly sensitive multiplex digital PCR assays are well suited for plasma-based monitoring of ERBB2 mutational status in patients with MBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547241PMC
http://dx.doi.org/10.1002/1878-0261.13592DOI Listing

Publication Analysis

Top Keywords

multiplex digital
12
digital pcr
12
erbb2 mutational
8
mutational status
8
metastatic breast
8
breast cancer
8
pcr assays
8
erbb2 mutations
8
patients
6
erbb2
5

Similar Publications

Purpose: Retrospective studies have found associations between the number of intratumoral immune cells and patient outcomes for specific cancers treated with targeted therapies. However, the clinical value of routinely quantifying intratumoral immune biomarkers using a digital pathology platform in the pan-cancer setting within an active clinical laboratory has not been established.

Methods: We developed ImmunoProfile, a daily clinical workflow that integrates automated multiplex immunofluorescence tissue staining, digital slide imaging, and machine learning-assisted scoring to quantify intratumoral CD8, PD-1, CD8PD-1, and FOXP3 immune cells and PD-L1 expression in formalin-fixed, paraffin-embedded tissue samples in a standardized and reproducible manner.

View Article and Find Full Text PDF

Background: Non-invasive fetal HPA typing is a valuable tool to identify the pregnancies at risk of fetal and neonatal alloimmune thrombocytopenia (FNAIT). Different approaches have been developed, mainly based on real-time PCR and droplet digital-PCR. Those methods have a limited ability to multiplex and require replicates due to the contamination risk.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (cSCC) is the most common skin cancer with metastatic potential and development of metastases carries a poor prognosis. To address the need for reliable risk stratification, we developed cSCCNet, a deep learning model using digital pathology of primary cSCC to predict metastatic risk. A retrospective cohort of 227 primary cSCC from four centres is used for model development.

View Article and Find Full Text PDF

Biomarkers are increasingly used in cancer management, including lung cancer. The use of circulating tumour DNA (ctDNA) detection has attracted significant interest as a non-invasive, highly specific, and sensitive strategy. In this study, we developed and validated a methylation-specific droplet digital PCR (ddPCR) multiplex assay with five tumour-specific methylation markers identified by in silico analysis for lung cancer detection across various clinical settings.

View Article and Find Full Text PDF

Digital SERS bioanalysis of single-enzyme biomarkers.

Proc Natl Acad Sci U S A

September 2025

Molecular Physiology Laboratory, Pioneering Research Institute, RIKEN, Wako, Saitama 351-0198, Japan.

Digital bioanalysis enables highly sensitive detection of biomolecules at the single-molecule level, making it a widely used technique in biomedical research. However, conventional approaches typically rely on fluorescence detection of single-enzyme reactions, which limits molecular selectivity and the ability to analyze multiple targets simultaneously. To address these limitations, we developed a digital bioanalysis platform based on surface-enhanced Raman scattering spectroscopy and microchamber arrays decorated with silver nanoparticles.

View Article and Find Full Text PDF