Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BACKGROUND Ischemia/reperfusion injury (IRI) is an inherent problem in organ transplantation, owing to the obligate period of ischemia that organs must endure. Cyclosporine A (CsA), though better know as an immunosuppressant, has been shown to mitigate warm IRI in a variety of organ types, including the liver. However, there is little evidence for CsA in preventing hepatic IRI in the transplant setting. MATERIAL AND METHODS In the present study, we tested the effect of CsA on hepatic IRI in a large-animal ex vivo model of donation after circulatory death (DCD). Porcine donors were pre-treated with either normal saline control or 20 mg/kg of CsA. Animals were subject to either 45 or 60 minutes of warm ischemia before hepatectomy, followed by 2 or 4 hours of cold storage prior to reperfusion on an ex vivo circuit. Over the course of a 12-hour perfusion, perfusion parameters were recorded and perfusate samples and biopsies were taken at regular intervals. RESULTS Peak perfusate lactate dehydrogenase was significantly decreased in the lower-ischemia group treated with CsA compared to the untreated group (4220 U/L [3515-5815] vs 11 305 [10 100-11 674]; P=0.023). However, no difference was seen between controls and CsA-treated groups on other parameters in perfusate alanine or asparagine aminotransferase (P=0.912, 0.455, respectively). Correspondingly, we found no difference on midpoint histological injury score (P=0.271). CONCLUSIONS We found minimal evidence that CsA is protective against hepatic IRI in our DCD model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838008PMC
http://dx.doi.org/10.12659/AOT.941054DOI Listing

Publication Analysis

Top Keywords

hepatic iri
12
ischemia/reperfusion injury
8
model donation
8
donation circulatory
8
circulatory death
8
evidence csa
8
csa
6
iri
5
cyclosporine mitigate
4
mitigate liver
4

Similar Publications

Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion injury (IRI) poses a significant clinical challenge in liver surgery and transplantation, primarily mediated through oxidative stress, mitochondrial dysfunction, and inflammatory activation. Herein, we developed SOD2-Res@CVs, an engineered vesicular platform combining SOD2-overexpressing mesenchymal stem cell-derived vesicles with liver-targeted and ROS-responsive resveratrol (Res)-loaded liposomes for multi-mechanistic intervention. In vivo imaging demonstrated that SOD2-Res@CVs selectively accumulated in IRI-damaged hepatic tissues.

View Article and Find Full Text PDF

Purpose: Ex vivo machine perfusion (EVMP) is increasingly recognized as a promising technique for enhancing the preservation and viability of donor organs, particularly in donation after circulatory death (DCD) liver transplantation (LT). This study validates a transplant surgeon-innovated EVMP protocol by assessing its efficacy in preserving liver function and reducing ischemia-reperfusion injury (IRI) in a porcine DCD-simulated liver transplant (DCD sLT) model.

Materials And Methods: Twenty Yorkshire pigs were used to compare static cold storage (SCS) and EVMP.

View Article and Find Full Text PDF

Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia-Reperfusion Injury.

Antioxidants (Basel)

July 2025

Division of Liver and Pancreas Transplantation, Department of Surgery, The Dumont-UCLA Transplantation Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.

Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS and immune signaling pathways are a hallmark of pathological liver conditions, such as hepatic ischemia-reperfusion injury (IRI).

View Article and Find Full Text PDF

MEF2D Aggravates Hepatic Ischaemia-Reperfusion Injury by Transcriptionally Regulating CXCL1 Through Interacting With NAT10.

Liver Int

September 2025

Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, National Quality Control Center for Donated Organ Procurement, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University

Background And Aims: Hepatic ischaemia-reperfusion injury (IRI), a common complication after hepatectomy and liver transplantation (LT), is a local sterile inflammatory response driven by innate immunity. Myocyte enhancer factor-2D (MEF2D) plays an important role in immune inflammatory response by transcriptionally activating or inhibiting gene expression, which is tightly associated with the pathogenic progression of hepatic disorders. However, the role of MEF2D in hepatic IRI is still unclear.

View Article and Find Full Text PDF