Field-controlled dynamics of skyrmions and monopoles.

Sci Adv

Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO 80309, USA.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetic monopoles, despite their ongoing experimental search as elementary particles, have inspired the discovery of analogous excitations in condensed matter systems. In chiral condensed matter systems, emergent monopoles are responsible for the onset of transitions between topologically distinct states and phases, such as in the case of transitions from helical and conical phase to A-phase comprising periodic arrays of skyrmions. By combining numerical modeling and optical characterizations, we describe how different geometrical configurations of skyrmions terminating at monopoles can be realized in liquid crystals and liquid crystal ferromagnets. We demonstrate how these complex structures can be effectively manipulated by external magnetic and electric fields. Furthermore, we discuss how our findings may hint at similar dynamics in other physical systems and their potential applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816702PMC
http://dx.doi.org/10.1126/sciadv.adj9373DOI Listing

Publication Analysis

Top Keywords

condensed matter
8
matter systems
8
field-controlled dynamics
4
dynamics skyrmions
4
monopoles
4
skyrmions monopoles
4
monopoles magnetic
4
magnetic monopoles
4
monopoles despite
4
despite ongoing
4

Similar Publications

Large language models (LLMs) have demonstrated transformative potential for materials discovery in condensed matter systems, but their full utility requires both broader application scenarios and integration with ab initio crystal structure prediction (CSP), density functional theory (DFT) methods and domain knowledge to benefit future inverse material design. Here, we develop an integrated computational framework combining language model-guided materials screening with genetic algorithm (GA) and graph neural network (GNN)-based CSP methods to predict new photovoltaic material. This LLM + CSP + DFT approach successfully identifies a previously overlooked oxide material with unexpected photovoltaic potential.

View Article and Find Full Text PDF

Thermal CO Adsorption and Activation on Copper Oxide Cluster Anions CuO ( = 3-9).

J Phys Chem A

September 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, P. R. China.

Understanding the active sites of copper (Cu)-based catalysts toward CO is a prerequisite for improving their rational design. The reactivity of copper oxide cluster anions CuO ( = 3-9) and bare copper cluster anions Cu toward CO has been investigated at room temperature by employing mass spectrometry combined with density functional theory (DFT) calculations. Only adsorption products are observed for the reaction of CuO with CO.

View Article and Find Full Text PDF

Spin Qubit Properties of the Boron-Vacancy/Carbon Defect in the Two-Dimensional Hexagonal Boron Nitride.

J Phys Condens Matter

September 2025

Department of Physics, Tuskegee University, 1200 West Montgomery Road, 106 Chappie James, Tuskegee, Alabama, 36088-1920, UNITED STATES.

Spin qubit defects in two-dimensional materials have a number of advantages over those in three-dimensional hosts including simpler technologies for the defect creation and control, as well as qubit accessibility. In this work, we select the VBCB defect in the hexagonal boron nitride (hBN) as a possible optically controllable spin qubit and explain its triplet ground state and neutrality. In this defect a boron vacancy is combined with a carbon dopant substituting the closest boron atom to the vacancy.

View Article and Find Full Text PDF

This study investigates the magnetoelectric (ME) effect of z-type DyCrO4 and the converse magnetoelectric (CME) effect of s-type DyCrO4 by using electron spin resonance (ESR). The peak-to-peak linewidths (ΔHpp), g-values, and double integral intensities (I) were calculated from the ESR spectra to investigate the coupling behaviors. The ME coupling effect was observed at 135 K in the z-type DyCrO4 powder, evidenced by an anomaly in the temperature dependence of the intensity or g value extracted from ESR.

View Article and Find Full Text PDF

Layer-dependent and delayed responses of disinfection by-product precursors to rainfall events in a stratified deepwater reservoir.

J Hazard Mater

September 2025

Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Ce

Rainfall events significantly increase dissolved organic matter (DOM) and disinfection by-product (DBP) precursors in the reservoir, threatening water supply security. However, the vertical variations and ecological drivers of DBP precursors in the deepwater stratified reservoir during rainfall events remain poorly understood. This study investigated DOM composition, DBP precursors, nutrients, metals, and algae in the Sanhekou Reservoir under stormwater influence.

View Article and Find Full Text PDF