A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Near-Infrared Spectroscopy with Supervised Machine Learning as a Screening Tool for Neutropenia. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of non-invasive tools in conjunction with artificial intelligence (AI) to detect diseases has the potential to revolutionize healthcare. Near-infrared spectroscopy (NIR) is a technology that can be used to analyze biological samples in a non-invasive manner. This study evaluated the use of NIR spectroscopy in the fingertip to detect neutropenia in solid-tumor oncologic patients. A total of 75 patients were enrolled in the study. Fingertip NIR spectra and complete blood counts were collected from each patient. The NIR spectra were pre-processed using Savitzky-Golay smoothing and outlier detection. The pre-processed data were split into training/validation and test sets using the Kennard-Stone method. A toolbox of supervised machine learning classification algorithms was applied to the training/validation set using a stratified 5-fold cross-validation regimen. The algorithms included linear discriminant analysis (LDA), logistic regression (LR), random forest (RF), multilayer perceptron (MLP), and support vector machines (SVMs). The SVM model performed best in the validation step, with 85% sensitivity, 89% negative predictive value (NPV), and 64% accuracy. The SVM model showed 67% sensitivity, 82% NPV, and 57% accuracy on the test set. These results suggest that NIR spectroscopy in the fingertip, combined with machine learning methods, can be used to detect neutropenia in solid-tumor oncology patients in a non-invasive and timely manner. This approach could help reduce exposure to invasive tests and prevent neutropenic patients from inadvertently undergoing chemotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817549PMC
http://dx.doi.org/10.3390/jpm14010009DOI Listing

Publication Analysis

Top Keywords

machine learning
12
near-infrared spectroscopy
8
supervised machine
8
nir spectroscopy
8
spectroscopy fingertip
8
detect neutropenia
8
neutropenia solid-tumor
8
nir spectra
8
svm model
8
nir
5

Similar Publications