98%
921
2 minutes
20
The brain combines multisensory inputs together to obtain a complete and reliable description of the world. Recent experiments suggest that several interconnected multisensory brain areas are simultaneously involved to integrate multisensory information. It was unknown how these mutually connected multisensory areas achieve multisensory integration. To answer this question, using biologically plausible neural circuit models we developed a decentralized system for information integration that comprises multiple interconnected multisensory brain areas. Through studying an example of integrating visual and vestibular cues to infer heading direction, we show that such a decentralized system is well consistent with experimental observations. In particular, we demonstrate that this decentralized system can optimally integrate information by implementing sampling-based Bayesian inference. The Poisson variability of spike generation provides appropriate variability to drive sampling, and the interconnections between multisensory areas store the correlation prior between multisensory stimuli. The decentralized system predicts that optimally integrated information emerges locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-99-7611-9_1 | DOI Listing |
PLoS Comput Biol
September 2025
Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy.
Typically, people perform actions in a valenced-positive or negative-way, depending on their attitudes or desires. These forms of action are named vitality forms (VFs). While it is well established that action goals are mediated by a parieto-frontal network, less is known about the processing of VFs.
View Article and Find Full Text PDFCereb Cortex
August 2025
Section of Brain Function Information, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.
View Article and Find Full Text PDFChaos
September 2025
Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Neuronal heterogeneity, characterized by a multitude of spiking neuronal patterns, is a widespread phenomenon throughout the nervous system. In particular, the brain exhibits strong variability among inhibitory neurons. Despite the huge neuronal heterogeneity across brain regions, which in principle could decrease synchronization due to differences in intrinsic neuronal properties, cortical areas coherently oscillate during various cognitive tasks.
View Article and Find Full Text PDF