98%
921
2 minutes
20
Purpose: Eosinophilic asthma (EA) and non-asthmatic eosinophilic bronchitis (EB) share similar eosinophilic airway inflammation. Unlike EA, EB did not present airway hyperresponsiveness or airflow obstruction. We aimed to compare the mechanism underlying the different manifestations between EA and EB via sputum transcriptomics analysis.
Methods: Induced-sputum cells from newly physician-diagnosed EA, EB patients, and healthy controls (HCs) were collected for RNA sequencing.
Results: Bulk RNA sequencing was performed using sputum cells from patients with EA (n = 18), EB (n = 15) and HCs (n = 28). Principal component analysis revealed similar gene expression patterns in EA and EB. The most differentially expressed genes in EB compared with HC were also shared by EA, including IL4, IL5 IL13, CLC, CPA3, and DNASE1L3. However, gene set enrichment analysis showed that the signatures regulating macrophage activation were enriched in EA compared to EB. Sputum cells were profiled using single-cell RNA sequencing. FABP4+ macrophages, SPP1+ macrophages, FCN1+ macrophages, dendritic cells, T cells, B cells, mast cells, and epithelial cells were identified based on gene expression profiling. Analysis of cell-cell communication revealed that interactions between FCN1+ macrophages and other cells were higher in EA than in EB. A wealth of transforming growth factor beta (TGF-β) and vascular endothelial growth factor (VEGF) interactions between FCN1+ macrophages and other cells have been shown in EA. The gene expression levels of EREG, TGFBI, and VEGFA in FCN1+ macrophages of EA were significantly higher than those of EB. Furthermore, signatures associated with the response to TGF-β, cellular response to VEGF stimulus and developmental cell growth were enriched in FCN1+ macrophages of EA compared to those of EB.
Conclusions: FCN1+ macrophage activation associated with airway remodeling processes was upregulated in EA compared to that in EB, which may contribute to airway hyperresponsiveness and airflow obstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823142 | PMC |
http://dx.doi.org/10.4168/aair.2024.16.1.55 | DOI Listing |
3 Biotech
October 2025
Department of Oncology, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.
Unlabelled: By integrating single-cell and bulk RNA-sequencing data for esophageal cancer (ESCA), we developed and validated a seven-macrophage-gene prognostic signature (FCN1, SCARB2, ATF5, PHLDA2, GLIPR1, CHORDC1, and BCKDK). This signature effectively stratified patients into high- and low-risk groups with significantly different overall survival, achieving area under the curve (AUC) values greater than 0.7 for 1-, 2-, and 3-year survival prediction.
View Article and Find Full Text PDFBMC Womens Health
May 2025
Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200086, China.
Background: Ovarian cancer (OC) is a formidable gynecological tumor marked with the highest mortality rate. The lack of effective biomarkers and treatment drugs places a substantial proportion of patients with OC at significant risk of mortality, primarily due to metastasis. Glycolysis metabolism, lipid metabolism, choline metabolism, and sphingolipid metabolism are closely intertwined with the occurrence and progression of OC.
View Article and Find Full Text PDFMol Cancer
March 2025
Research Institute and Hospital, National Cancer Center, Goyang, 10408, Republic of Korea.
We report proteogenomic analysis of locally advanced cervical cancer (LACC). Exome-seq data revealed predominant alterations of keratinization-TP53 regulation and O-glycosylation-TP53 regulation axes in squamous and adeno-LACC, respectively, compared to in early-stage cervical cancer. Integrated clustering of mRNA, protein, and phosphorylation data identified six subtypes (Sub1-6) of LACC among which Sub3, 5, and 6 showed the treatment-resistant nature with poor local recurrence-free survival.
View Article and Find Full Text PDFPLoS One
May 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFOpen Med (Wars)
December 2024
Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
Background: Atherosclerosis is a lipid-driven inflammatory disease characterized by plaque formation in major arteries. These plaques contain lipid-rich macrophages that accumulate through monocyte recruitment, local macrophage differentiation, and proliferation.
Objective: We identify the macrophage subsets that are closely related to atherosclerosis and reveal the key pathways in the progression of atherosclerotic disease.