98%
921
2 minutes
20
cGAMP is a second messenger that is synthesized in the cytosol upon detection of cytosolic dsDNA and passed between cells to facilitate downstream immune signaling. ENPP1, an extracellular enzyme, was the only metazoan cGAMP hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from that of ENPP1 and accounts for all remaining cGAMP hydrolysis activity in mice lacking ENPP1. Importantly, we also show that as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolase activity results in diminished cancer growth and metastasis of certain tumor types. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work clearly shows that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a new target for cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802559 | PMC |
http://dx.doi.org/10.1101/2024.01.12.575449 | DOI Listing |
Cell Rep Med
August 2025
Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA. Electronic address:
Only one in five patients respond to immune checkpoint inhibitors, which primarily target adaptive immunity. Ectonucleotide pyrophosphatase/phophodiesterase 1 (ENPP1), the dominant hydrolase of 2'3'-cyclic-GMP-AMP (cGAMP) that suppresses downstream stimulator of interferon genes (STING) signaling, has emerged as a promising innate immunotherapy target. However, existing ENPP1 inhibitors have been optimized for prolonged systemic residence time rather than effective target inhibition within tumors.
View Article and Find Full Text PDFInt J Mol Sci
June 2025
Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
The unique secondary messenger 2'3'-cGAMP, produced by cGAS in response to cytosolic dsDNA, plays a critical role in activating innate immunity by binding to and activating STING via cell-intrinsic, autocrine, or paracrine mechanisms. Recently, we identified Rab18 as a novel, STING-independent binder of 2'3'-cGAMP. Binding of 2'3'-cGAMP to Rab18 promotes Rab18 activation and induces cell migration.
View Article and Find Full Text PDFRespir Res
June 2025
Department of Respiratory and Critical Care Medicine, National Health Commission Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
The ATP synthase c subunit (c subunit) constitutes the mitochondrial permeability transition pore (mPTP). The extended opening of the mPTP is crucial in the development of various human illnesses. Nevertheless, it remains unclear whether the c subunit regulates the prolonged opening of the mPTP to attenuate inflammatory responses in asthma.
View Article and Find Full Text PDFSignal Transduct Target Ther
June 2025
Solid Tumors Program. Division of Oncology, Center for Applied Medical Research (CIMA)-University of Navarra, Pamplona, Spain.
The ATP-hydrolytic ectoenzyme ENPP1 has been implicated in the metastasis and recurrence in triple-negative breast cancer (TNBC), primarily by contributing to tumor cell survival and treatment resistance. However, the precise mechanisms remain unclear. In a model of local recurrence (LR), circulating tumor cells (CTC) engrafting in the post-resection tumor bed developed a radioresistant phenotype linked to an ENPP1-gene signature which was also identified in TNBC patients, suggesting ENPP1´s role in genome integrity.
View Article and Find Full Text PDFbioRxiv
May 2025
Department of Biochemistry, Stanford University; Stanford, CA 94305, USA.
Only one in five patients is estimated to respond to immune checkpoint inhibitors, which primarily target adaptive immunity. To date, no FDA-approved immunotherapies directly activate the innate anti-cancer immunity-an essential driver of lymphocyte recruitment and potentiator of responses to existing cancer immunotherapies. ENPP1, the dominant hydrolase that degrades extracellular cGAMP and suppresses downstream STING-mediated innate immune signaling, has emerged as a promising therapeutic target.
View Article and Find Full Text PDF