98%
921
2 minutes
20
Li intercalation is commonly used to enhance the carrier density in epitaxial graphene and mitigate coupling to the substrate. So far, the understanding of the intercalation process, particularly how Li penetrates different layers above the substrate, and its impact on electron transport remains incomplete. Here, we report different phases of Li intercalation and their kinetic processes in epitaxial mono- and bilayer graphene grown on SiC. The distinct doping effects of each intercalation phase are characterized using scanning tunneling spectroscopy. Furthermore, changes in the local conduction regimes are directly mapped by scanning tunneling potentiometry and attributed to different charge transfer states of the intercalated Li. The stable intercalation marked by the formation of Li-Si bonds leads to a significant 56% reduction in sheet resistance of the resulting quasi-free bilayer graphene, as compared to the pristine monolayer graphene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851339 | PMC |
http://dx.doi.org/10.1039/d3nr03070a | DOI Listing |
ACS Nano
September 2025
Insitut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany.
Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:
Cellulose-based triboelectric nanogenerators (TENGs) have garnered significant attention in wearable electronics due to their biodegradability and abundant availability. However, the near-electroneutrality of cellulose hinders its advancement and broader application in high-performance TENGs. In this study, the triboelectric polarity of cellulose nanofibers (CNF) is modified by grafting different functional groups, wherein the incorporation of polar sulfonic acid groups enhances the deep trap density on the surface of CNF by an order of magnitude, reduces charge dissipation rates, and increases surface potential by nearly 200 % compared to untreated CNF.
View Article and Find Full Text PDFSmall
September 2025
Department of Semiconductor Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon, 24341, South Korea.
2D van der Waals ferromagnets hold immense promise for spintronic applications due to their controllability and versatility. Despite their significance, the realization and in-depth characterization of ferromagnetic materials in atomically thin single layers, close to the true 2D limit, has been scarce. Here, a successful synthesis of monolayer (ML) 1T-CrTe is reported on a bilayer graphene (BLG) substrate via molecular beam epitaxy.
View Article and Find Full Text PDFACS Nano
September 2025
Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
As a versatile platform for exploring exotic quantum phases, moiré superlattices, ranging from twisted graphene to twisted transition metal dichalcogenides, have been intensively studied. In this work, based on exact diagonalization and Hartree-Fock mean-field calculations, the interaction-driven topological phases are investigated in hole-doped twisted bilayer MoS at the high filling factor = 3. Besides the nematic insulator and quantum anomalous Hall phases, the topological Wigner molecule crystal (TWMC) phase is found in the phase diagram.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS & Université Claude Bernard Lyon 1, Lyon 69367, France.
The Martini model is a coarse-grained force field allowing simulations of biomolecular systems as well as a range of materials including different types of nanomaterials of technological interest. Recently, a new version of the force field (version 3) has been released that includes new parameters for lipids, proteins, carbohydrates, and a number of small molecules, but not yet carbon nanomaterials. Here, we present new Martini models for three major types of carbon nanomaterials: fullerene, carbon nanotubes, and graphene.
View Article and Find Full Text PDF