98%
921
2 minutes
20
Although polyploid plants have lower stomatal density than their diploid counterparts, the molecular mechanisms underlying this difference remain elusive. Here, we constructed a network based on the triploid poplar transcriptome data and triple-gene mutual interaction algorithm and found that PpnMYC2 was related to stomatal development-related genes PpnEPF2, PpnEPFL4, and PpnEPFL9. The interactions between PpnMYC2 and PagJAZs were experimentally validated. PpnMYC2-overexpressing poplar and Arabidopsis thaliana had reduced stomatal density. Poplar overexpressing PpnMYC2 had higher water use efficiency and drought resistance. RNA-sequencing data of poplars overexpressing PpnMYC2 showed that PpnMYC2 promotes the expression of stomatal density inhibitors PagEPF2 and PagEPFL4 and inhibits the expression of the stomatal density-positive regulator PagEPFL9. Yeast one-hybrid system, electrophoretic mobility shift assay, ChIP-qPCR, and dual-luciferase assay were employed to substantiate that PpnMYC2 directly regulated PagEPF2, PagEPFL4, and PagEPFL9. PpnMYC2, PpnEPF2, and PpnEPFL4 were significantly upregulated, whereas PpnEPFL9 was downregulated during stomatal formation in triploid poplar. Our results are of great significance for revealing the regulation mechanism of plant stomatal occurrence and polyploid stomatal density, as well as reducing stomatal density and improving plant water use efficiency by overexpressing MYC2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19531 | DOI Listing |
Front Plant Sci
August 2025
School of Biosciences, University of Sheffield, Sheffield, United Kingdom.
Drought has a major impact on crop yields. Silicon (Si) application has been proposed to improve drought resilience via several mechanisms including modifying the level of stomatal gas exchange. However, the impact of Si on transpiration and stomatal conductance varies between studies.
View Article and Find Full Text PDFPlant Physiol
September 2025
School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom.
Stomatal pores govern the tradeoff between CO₂ assimilation and water loss, and optimizing their performance is critical for crop resilience, particularly under dynamic field environments. Here, we show that overexpression of Triticum aestivum EPIDERMAL PATTERNING FACTOR1 (TaEPF1) in bread wheat (Triticum aestivum) reduces leaf stomatal density in a leaf surface-specific manner, with a greater decline on the abaxial surface than on the adaxial surface. TaEPF1 overexpressors exhibited substantially lower stomatal conductance than wild-type (WT) control plants, which resulted in diffusional constraints limiting photosynthesis when measured under monochromatic red light.
View Article and Find Full Text PDFNew Phytol
September 2025
Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, 1055 Rue du Peps, Québec, QC, G1V 4C7, Canada.
Despite the increasing number of studies investigating tree methane fluxes, the relationships between tree methane fluxes and species traits remain mostly unexplored. We measured leaf and stem methane fluxes of five tree species (Acer saccharinum, Fraxinus nigra, Ulmus americana, Salix nigra, and Populus spp.) in the floodplain of Lake St-Pierre (Québec) and examined how these fluxes vary with species traits (wood density, humidity, pH; leaf water content, pH, stomatal conductance; methanogen and methanotroph relative abundances (RAs) in leaf, wood, and bark).
View Article and Find Full Text PDFJ Exp Bot
September 2025
School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
Distinct physiological and anatomical traits can lead to substantial variation in photosynthetic efficiency among plant varieties, which may, in turn, impact agronomically important traits. We conducted a comprehensive comparative analysis of leaf physiology, anatomy and biochemistry in Solanum lycopersicum (LEA) a modern inbred variety suited for the processing industry and Solanum pennellii (Lost accession LA5240) a drought-tolerant, green-fruited wild species to investigate differences in photosynthetic performance and stomatal physiology. Lost exhibited higher photosynthetic capacity due to both biochemical and anatomical features.
View Article and Find Full Text PDFMicrosc Res Tech
August 2025
Department of Molecular Biology and Genetics, Faculty of Science and Art, Ordu University, Ordu, Turkey.
This study was carried out using light and scanning electron microscopy to examine in detail the anatomical and micromorphological characteristics of roots, stems, and leaves of six Centaurea taxa (two of which are endemic) to determine the characters that are important for the taxa studied. For anatomical investigations, transverse and superficial sections were taken from root, stem, and leaf organs and examined by light microscopy. For micromorphological assessments, dried leaf surfaces were analyzed via scanning electron microscopy (SEM).
View Article and Find Full Text PDF