98%
921
2 minutes
20
Periodontitis is a chronic inflammatory disease. We have previously shown that salivary DNA is higher in patients with periodontitis. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of chronic inflammatory diseases. The objective of this case-control study was to compare patients with periodontitis and healthy controls regarding the salivary concentrations of extracellular DNA and NET components. Unstimulated saliva samples were collected from 49 patients with periodontitis and 71 controls before an oral examination. Salivary extracellular DNA was isolated and quantified fluorometrically and using PCR. NET-associated markers were assessed using ELISA. We have found significantly higher concentrations of salivary extracellular DNA in samples from periodontitis patients (five-times higher for supernatant and three times for pellet). Our results show that patients also have three-times-higher salivary nucleosomes and NET-associated enzymes-myeloperoxidase and neutrophil elastase (both two-times higher). Neutrophil elastase and salivary DNA in the pellet correlated positively with the pocket depth/clinical attachment level in periodontitis patients (r = 0.31-weak correlation; = 0.03 and r = 0.41-moderate correlation, = 0.004). Correlations between salivary extracellular DNA and NET enzymes were positive and significant. Based on our results, the higher salivary extracellular DNA in periodontitis seems to be related to components of NETs, albeit with weak to moderate correlations indicating that NETs are produced in periodontitis and can play a role in its pathogenesis similarly to other inflammatory diseases. Further studies should prove this assumption with potential diagnostic and therapeutic consequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816443 | PMC |
http://dx.doi.org/10.3390/jcm13020468 | DOI Listing |
Nanoscale Horiz
September 2025
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Extracellular vesicles (EVs) have emerged as valuable sources for liquid biopsy in disease diagnostics, given their protein and nucleic acid cargoes (, miRNA, mRNA, glycoRNA) can serve as critical biomarkers. DNA nanotechnology, leveraging its inherent programmability, high specificity, and powerful signal amplification capability, offers a transformative approach for the bioanalysis of EVs. This review summarizes recent advances in DNA nanotechnology-based analytical methodologies for detecting EV-associated proteins and nucleic acids.
View Article and Find Full Text PDFBiol Psychiatry
September 2025
Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Canada; Division of Endocrinology, Children's Hospital LA, Los Angeles, CA; Department of Pediatrics, Keck Scho
Background: Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of psychosomatic disorders in adolescence and adulthood. Most investigations into biological processes that have been perturbed by ELA have profiled DNA methylation in whole blood and coalesced around perturbations of immunobiology being centrally insulted by ELA.
Methods: To identify novel molecular signatures that are enduringly perturbed by childhood maltreatment, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT, n = 7, 4M 3F) or maltreatment in infancy (MALT, n = 6, 3M 3F).
PLoS One
September 2025
Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.
View Article and Find Full Text PDFJ Bioenerg Biomembr
September 2025
Department of Vascular, Shanghai TCM-INTEGRATED Hospital, Shanghai, 200082, China.
This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.
View Article and Find Full Text PDF