Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advances in oncological research have highlighted the potential of naturally derived compounds in cancer prevention and treatment. Notably, sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables including broccoli and cabbage, has exhibited potent chemosensitizing capabilities across diverse cancer types of bone, brain, breast, lung, skin, etc. Chemosensitization refers to the enhancement of cancer cell sensitivity to chemotherapy agents, counteracting the chemoresistance often developed by tumor cells. Mechanistically, SFN orchestrates this sensitization by modulating an array of cellular signaling pathways (e.g., Akt/mTOR, NF-κB, Wnt/β-catenin), and regulating the expression and activity of pivotal genes, proteins, and enzymes (e.g., p53, p21, survivin, Bcl-2, caspases). When combined with conventional chemotherapeutic agents, SFN synergistically inhibits cancer cell proliferation, invasion, migration, and metastasis while potentiating drug-induced apoptosis. This positions SFN as a potential adjunct in cancer therapy to augment the efficacy of standard treatments. Ongoing preclinical and clinical investigations aim to further delineate the therapeutic potential of SFN in oncology. This review illuminates the multifaceted role of this phytochemical, emphasizing its potential to enhance the therapeutic efficacy of anti-cancer agents, suggesting its prospective contributions to cancer chemosensitization and management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814109PMC
http://dx.doi.org/10.3390/cancers16020244DOI Listing

Publication Analysis

Top Keywords

cancer cell
8
cancer
6
potential
5
sfn
5
harnessing sulforaphane
4
sulforaphane potential
4
potential chemosensitizing
4
chemosensitizing agent
4
agent comprehensive
4
comprehensive review
4

Similar Publications

IGLV3-21-directed bispecific antibodies activate T cells and promote killing in a high-risk subset of chronic lymphocytic leukemia.

Haematologica

September 2025

Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.

We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.

View Article and Find Full Text PDF

Immunotherapies, including cell therapies, are effective anti-cancer agents. However, cellular product persistence can be limiting with short functional duration of activity contributing to disease relapse. A variety of manufacturing protocols are used to generate therapeutic engineered T-cells; these differ in techniques used for T-cell isolation, activation, genetic modification, and other methodology.

View Article and Find Full Text PDF

Age-related differences in donor selection priorities for allogeneic hematopoietic transplantation.

Haematologica

September 2025

Division of Hematology, Jichi Medical University Saitama Medical Center, Saitama, Japan; Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke.

Patient age might influence donor selection priorities in allogeneic hematopoietic stem cell transplantation (allo-HCT), due to the differences in donor age, organ function, and resistance to graft-versus-host disease between younger and older patients. We compared the transplant outcomes among human leukocyte antigen (HLA)-matched related donors (M-RDs, n=4,106), HLA 1-antigen-mismatched related donors (1MM-RDs, n=592), HLA 2-3-antigen-mismatched related donors (23MM-RDs, n=882), HLA-matched unrelated donors (M-UDs, n=3,927), HLA 1-locus-mismatched unrelated donors (1MM-UDs, n=2,474), and unrelated cord blood units (U-CBs, n=5,867) between patients aged.

View Article and Find Full Text PDF

Dynein-2 requires HSP90 chaperone activity to ensure robust retrograde IFT and ciliogenesis.

J Cell Sci

September 2025

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.

The microtubule motor dynein-2 is responsible for retrograde intraflagellar transport (IFT), a process critical for cilia assembly and cilium-dependent signaling. Mutations in genes encoding dynein-2 subunits interfere with ciliogenesis and are among the most frequent causes of skeletal ciliopathies. Despite its importance, little is known regarding dynein-2 assembly and regulation.

View Article and Find Full Text PDF

New strategies to enhance the efficacy of PD-1/PD-L1 inhibitors in treating microsatellite stable colorectal cancer.

Future Oncol

September 2025

Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China.

Immune checkpoint therapy has demonstrated significant potential in the treatment of various solid tumors. Among these, tumor-induced immunosuppression mediated by programmed cell death protein 1 (PD-1) represents a critical checkpoint. PD-1/programmed death-ligand 1 (PD-L1) inhibitors have been proven to exhibit substantial efficacy in solid tumors such as melanoma and bladder cancer.

View Article and Find Full Text PDF