98%
921
2 minutes
20
To manage risks and minimize the transmission of contagious diseases, individuals may reduce their contact with each other and take other precautions as much as possible in their daily lives and workplaces. As a result, the transmission of the infection reduces due to the behavioral changes. These behavioral changes are incorporated into models by introducing saturation in disease incidence. In this article, we propose and analyze a tuberculosis model that incorporates saturated exogenous reinfection and treatment. The stability analysis of the model's steady states is rigorously examined. We observe that the disease-free equilibrium point and the endemic equilibrium point (EEP) are globally asymptotically stable if the basic reproduction number (R0) is less than 1 and greater than 1, respectively, only when exogenous reinfection is not present (p=0) and when treatment is available for all (ω=0). However, even when R0 is less than 1, tuberculosis may persist at a specific level in the presence of exogenous reinfection and treatment saturation, leading to a backward bifurcation in the system. The existence and direction of Hopf-bifurcations are also discussed. Furthermore, we numerically validate our analytical results using different parameter sets. In the numerical examples, we study Hopf-bifurcations for parameters such as β, p, α, and ω. In one example, we observe that increasing β leads to the loss of stability of the unique EEP through a forward Hopf-bifurcation. If β is further increased, the unique EEP restores its stability, and the bifurcation diagram exhibits an interesting structure known as an endemic bubble. The existence of an endemic bubble for the saturation constant ω is also observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0179351 | DOI Listing |
Interact J Med Res
September 2025
Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
Background: Dengue fever remains the most significant vector-borne disease in Southeast Asia, imposing a substantial burden on public health systems. Global warming and increased international mobility may exacerbate the disease's prevalence. Furthermore, the unprecedented COVID-19 pandemic may have influenced the epidemiological patterns of dengue.
View Article and Find Full Text PDFJMIR Public Health Surveill
September 2025
Earth Observation Centre (EOC), Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.
Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.
Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.
Neurology
October 2025
Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada.
Background And Objectives: Years before diagnosis of Parkinson disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA), mild prodromal manifestations can be detected. Longitudinal follow-up of people with prodromal synucleinopathy, particularly idiopathic/isolated REM sleep behavior disorder (iRBD), enables in-depth clinical phenotyping of early disease, which could facilitate stratification for clinical trials, provide the definition of appropriate end points, or predict phenoconversion more precisely. The aim of this study was to update and expand on previous studies assessing clinical evolution from iRBD to clinically diagnosed disease, up to 14 years before diagnosis.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.
Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.
The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.
View Article and Find Full Text PDF