98%
921
2 minutes
20
The objective of this study was to compare the minimum inhibitory concentrations of antimicrobials included in a commercial broth microdilution panel among Gram-positive pathogens that caused non-severe clinical mastitis on three Michigan dairy farms. Duplicate quarter milk samples were collected from eligible quarters of cows enrolled in a randomized clinical trial, cultured in a university laboratory, and identified using MALDI-TOF. Etiologies were grouped by genus as species (n = 11), species (n = 44), non-aureus species (n = 39), or species (n = 25). Minimum inhibitory concentrations (MICs) were determined using the mastitis panel of a commercially available broth microdilution test. In vitro susceptibility was determined using approved guidelines and included breakpoints for mastitis pathogens, or when not available, breakpoints from other species. Most isolates were inhibited at or below breakpoints that demonstrated in vitro susceptibility. The proportions of susceptible isolates varied among pathogens for pirlimycin, penicillin, and tetracycline. The greatest proportion of resistance was observed for pirlimycin, tetracycline, and sulfadimethoxine. Survival analysis was performed to evaluate differences in MICs among pathogen groups. MIC values varied among pathogens for ceftiofur, cephalothin, erythromycin, penicillin, pirlimycin, and tetracycline. However, nearly all isolates were susceptible to ceftiofur and cephalothin, indicating that pathogen differences in MIC are not likely clinically relevant, as these are the two most commonly administered mastitis treatments in the United States. While differences in vitro susceptibility were observed for some antimicrobials, susceptibility was high to cephalosporin-based IMM treatments that are most commonly used and did not vary among pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812473 | PMC |
http://dx.doi.org/10.3390/antibiotics13010091 | DOI Listing |
Lasers Med Sci
September 2025
Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Microbial contamination of absorbable collagen membranes used in guided bone regeneration (GBR) may compromise healing outcomes. This study aimed to investigate whether the minimum inhibitory concentration (MIC) of hydrogen peroxide (HO) can improve the antibacterial effect of indocyanine green (ICG)-mediated antimicrobial photodynamic therapy (PDT) on absorbable collagen membranes while reducing the need for high HO concentrations. A laboratory-based model was developed using Streptococcus sanguinis and Staphylococcus aureus.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
Aims: This study aims to investigate the genomic profile of a multidrug-resistant Escherichia coli strain, 160-11H1, co-carrying an extended-spectrum β-lactamase (ESBL) and the plasmid-mediated mobile colistin resistance gene, mcr-5.
Methods And Results: The entire genome of the strain was sequenced using Illumina MiSeq and Oxford Nanopore platforms, and de novo assembly was performed using Unicycler. The genome size was 5 031,330 bp and comprised 5 140 coding sequences.
Microbiol Spectr
September 2025
Division of Infectious Diseases, Department of Medicine, University of Texas at Tyler School of Medicine, Tyler, Texas, USA.
Despite the long therapy duration, the treatment outcomes for lung disease (MAB-LD) are very poor. β-Lactams are among the recommended drugs for the treatment of MAB-LD; however, they are prone to hydrolysis by MAB β-lactamase enzymes. Therefore, β-lactamase inhibitors have been developed to overcome this problem.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.
Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.