98%
921
2 minutes
20
Osteoporosis, which manifests as reduced bone mass and deteriorated bone quality, is common in the elderly population. It is characterized by persistent elevation of macrophage-associated inflammation and active osteoclast bone resorption. Currently, the roles of intracellular metabolism in regulating these processes remain unclear. In this study, we initially performed bioinformatics analysis and observed a significant increase in the proportion of M1 macrophages in bone marrow with aging. Further metabolomics analysis demonstrated a notable reduction in the expression of carnitine metabolites in aged macrophages, while carnitine was not detected in osteoclasts. During the differentiation process, osteoclasts took up carnitine synthesized by macrophages to regulate their own activity. Mechanistically, carnitine enhanced the function of Nrf2 by inhibiting the Keap1-Nrf2 interaction, reducing the proteasome-dependent ubiquitination and degradation of Nrf2. In silico molecular ligand docking analysis of the interaction between carnitine and Keap1 showed that carnitine binds to Keap1 to stabilize Nrf2 and enhance its function. In this study, we found that the decrease in carnitine levels in aging macrophages causes overactivation of osteoclasts, ultimately leading to osteoporosis. A decrease in serum carnitine levels in patients with osteoporosis was found to have good diagnostic and predictive value. Moreover, supplementation with carnitine was shown to be effective in the treatment of osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2024.01.017 | DOI Listing |
mBio
September 2025
Department of Microbiology & Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.
View Article and Find Full Text PDFIndian J Endocrinol Metab
August 2025
Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India.
Metabolomics is a type of laboratory science used to understand the cellular and metabolic defects in any disease process. It comprehensively identifies endogenous and exogenous low-molecular-weight (<1 kDa) molecules or metabolites in a high-throughput manner. Mass spectrometry-based methods are used for metabolomics which can be targeted and non-targeted.
View Article and Find Full Text PDFFungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFForensic Sci Int
September 2025
Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 111711, Colombia. Electronic address:
Carbon monoxide (CO) poisoning remains a major forensic and public health concern due to its high lethality and diagnostic challenges. Its colorless, odorless nature and the limited reliability of carboxyhemoglobin (COHb) levels-compounded by postmortem changes-complicate toxicological interpretation. This study employed untargeted metabolomics and lipidomics to characterize systemic biochemical alterations in fatal CO poisoning cases.
View Article and Find Full Text PDFClin Nutr ESPEN
September 2025
College of Nursing, University of Kentucky 751 Rose Street Lexington, Kentucky 40536.
Background: Oxidative stress (OS) accelerates the pathogenesis of coronary artery disease (CAD) by contributing to atherosclerotic plaque formation. Current research indicates that antioxidants can mitigate OS by reducing the production of free radicals. Despite many studies that have tested the effects of antioxidants on oxidative stress in patients with CAD, the literature still lacks an updated and comprehensive systematic review.
View Article and Find Full Text PDF