Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Increased vascular permeability is a prevalent feature in a wide spectrum of clinical conditions, but no effective treatments to restore the endothelial barrier are available. Idiopathic systemic capillary leak syndrome (ISCLS) is a life-threatening Paroxysmal Permeability Disorder characterized by abrupt, massive plasma extravasation. This condition serves as a robust model for investigating therapeutic approaches targeting interendothelial junctions. We conducted a single-center, interventional in vitro study at the Referral Center for ISCLS in Italy, involving four diagnosed ISCLS patients, aiming at investigating the effects of FX06, a Bβ15-42 fibrin-derived peptide binding to VE-Cadherin, on endothelial barrier exposed to intercritical and acute ISCLS sera. The Transwell Permeability Assay was used to assess the permeability of human umbilical vein endothelial cells (HUVECs) exposed to ISCLS sera with or without FX06 (50 µg/ml). Acute ISCLS serum was also tested in a three-dimensional microfluidic device. Nitric oxide (NO), VE-Cadherin localization, and cytoskeletal organization were also assessed. In two and three-dimensional systems, ISCLS sera increased endothelial permeability, with a more pronounced effect for acute sera. Furthermore, acute sera altered VE-Cadherin localization and cytoskeletal organization. NO levels remained unchanged. FX06 restored the endothelial barrier function by influencing cellular localization rather than VE-Cadherin levels. In conclusion, FX06 prevents and reverts the hyperpermeability induced by ISCLS sera. These preliminary yet promising results provide initial evidence of the in vitro efficacy of a drug targeting the underlying pathophysiological mechanisms of ISCLS. Moreover, this approach may hold potential for addressing hyperpermeability in a spectrum of clinical conditions beyond ISCLS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.116147DOI Listing

Publication Analysis

Top Keywords

endothelial barrier
16
iscls sera
16
iscls
10
systemic capillary
8
capillary leak
8
leak syndrome
8
spectrum clinical
8
clinical conditions
8
acute iscls
8
ve-cadherin localization
8

Similar Publications

WNT7A and WNT7B, secreted by neural cells, are essential regulators of developmental brain angiogenesis and blood-brain barrier integrity. In brain endothelial cells, WNT7 proteins activate β-catenin signaling through the ligand-specific receptor complex GPR124-RECK and classical WNT receptors of the FZD and LRP families. Previous studies suggested that WNT7 isoforms assemble a GPR124-RECK-FZD-LRP5/6 multi-receptor complex for signaling.

View Article and Find Full Text PDF

Nickel exposure aggravates aortic dissection by exacerbating neutrophil recruitment and NETosis to compromise endothelial barrier.

J Hazard Mater

September 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Environmental Health Risk Assessment Engineering Research Center, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, N

Nickel exposure elevates aortic dissection (AD) risk, yet its pathogenic mechanisms remain unclear. Here, we demonstrate that nickel accelerates AD progression, particularly in hypertensive individuals. Bioinformatics analysis of GEO datasets identified chemokine-mediated endothelial-neutrophil crosstalk as a key pathway.

View Article and Find Full Text PDF

Multiple biological barriers severely restrict the delivery efficiency of nanoparticles (NPs) to tumors. To overcome biological barriers, traditional NPs usually require a complex design, which increases the difficulty of clinical translation. Therefore, there appears to be a dilemma between the complex biological barriers and clinical requirement for a simple molecular structure of NPs.

View Article and Find Full Text PDF

Unifying Vascular Injury and Neurodegeneration: A Mechanistic Continuum in Cerebral Small Vessel Disease and Dementia.

Eur J Neurosci

September 2025

Global Health Neurology Lab, Sydney, New South Wales, Australia.

Cerebral small vessel disease (CSVD) is a major yet underappreciated driver of cognitive impairment and dementia, contributing to nearly half of all cases. Emerging evidence indicates that CSVD is not merely a coexisting vascular condition but an active amplifier of neurodegeneration, operating through a self-perpetuating cascade of microvascular injury, blood-brain barrier (BBB) breakdown, and glymphatic system dysfunction. In this hypothesis-driven review, we propose the Integrated Vascular-Neurodegenerative Continuum, a mechanistic model in which vascular pathology triggers and accelerates neurodegeneration via intersecting pathways, including chronic cerebral hypoperfusion, oxidative stress, and APOE ε4-associated endothelial vulnerability.

View Article and Find Full Text PDF

The divergence between the central and peripheral vascular system, particularly the emergence of the blood-brain barrier (BBB), is central to the brain's homeostasis and functions. However, the molecular and genetic constituents that separating the BBB vascular cells from the rest remain elusive. Using single cell transcriptomics, we identified new cerebrovascular markers, e.

View Article and Find Full Text PDF