Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

(Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, , is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865790PMC
http://dx.doi.org/10.1128/mbio.03208-23DOI Listing

Publication Analysis

Top Keywords

carbon starvation
20
lipid metabolism
20
dormancy mtb
8
starvation model
8
required survival
8
survival carbon
8
fatty acid
8
inhibiting lipid
8
metabolism lipase
8
lipase inhibitor
8

Similar Publications

While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization.

View Article and Find Full Text PDF

A leaf is an organ composed of different tissues that fulfill specific functions. We hypothesized that since cells in vascular or mesophyll tissues as well as in stoma are developmentally tuned to operate their functions, mitochondria from these cells could exhibit significant metabolic differences. Using the IMTACT method, mitochondria were isolated from these three specific cell types, and the subsequent proteomes were analyzed.

View Article and Find Full Text PDF

Primary Metabolic Variations in Maize Plants Affected by Different Levels of Nitrogen Supply.

Metabolites

August 2025

Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea.

: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient levels on maize seedling growth and primary metabolite profiles.

View Article and Find Full Text PDF

Increasing lipid accumulation in Chlamydomonas by serial knocking out of DYRKP1 kinase and ADP-glucose pyrophosphorylase.

Microb Cell Fact

August 2025

Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 222 04763, Republic of Korea.

Microalgae are promising sustainable feedstocks for biodiesel production. Among the primary carbon reservoirs in microalgae, starch and lipids are the main targets for metabolic engineering aimed at enhancing productivity. Redirecting carbon flux from starch toward lipid biosynthesis has been considered an effective strategy to improve lipid yield, and manipulating upstream regulators may allow broader control over metabolic networks.

View Article and Find Full Text PDF

High-entropy intermetallic alloy/carbon nanoflower cascade nanozyme for multi-modal synergistic cancer therapy.

J Colloid Interface Sci

August 2025

Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

Although nanozyme-mediated chemodynamic therapy (CDT) has been extensively investigated, its therapeutic efficacy is hindered by tumor microenvironment (TME), which features low endogenous HO level and high glutathione (GSH) concentration. In this work, PtFeCoMoMn high-entropy intermetallic alloy/N-doped carbon nanoflowers (HEIA/NCNFs) was synthesized by a one-step pyrolysis. The HEIA/NCNFs exhibited multiple peroxidase (POD)-, catalase (CAT)-, oxidase (OXD)-, glutathione oxidase (GSHOx)-, and NADPH oxidase (NOX)-like activities, which were integrated with glucose oxidase (GOx) and doxorubicin (DOX) to establish a cascade nanotherapeutic platform (termed HEIA/NCNFs-GOx/DOX).

View Article and Find Full Text PDF