Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794172PMC
http://dx.doi.org/10.1038/s41467-023-43012-9DOI Listing

Publication Analysis

Top Keywords

conserved chromatin
4
chromatin repetitive
4
repetitive patterns
4
patterns reveal
4
reveal slow
4
slow genome
4
genome evolution
4
evolution frogs
4
frogs frogs
4
frogs ecologically
4

Similar Publications

Target RNA recognition drives PIWI complex assembly for transposon silencing.

Mol Cell

September 2025

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria. Electronic address:

PIWI-clade Argonaute proteins and their associated PIWI-interacting RNAs (piRNAs) are essential guardians of genome integrity, silencing transposable elements through distinct nuclear and cytoplasmic pathways. Nuclear PIWI proteins direct heterochromatin formation at transposon loci, while cytoplasmic PIWIs cleave transposon transcripts to initiate piRNA amplification. Both processes rely on target RNA recognition by PIWI-piRNA complexes, yet how this leads to effector recruitment is unclear.

View Article and Find Full Text PDF

Reshaping epigenomic landscapes facilitated bread wheat speciation.

Plant Physiol

September 2025

Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

Polyploidization is a driving force of wheat (Triticum aestivum) evolution and speciation, yet its impact on epigenetic regulation and gene expression remains unclear. Here, we constructed a high-resolution epigenetic landscape across leaves, spikes, and roots of hexaploid wheat and its tetraploid and diploid relatives. Inter-species stably expressed genes exhibited conserved amino acid sequences under strong purifying selection, while dynamically expressed genes were linked to species-specific adaptation.

View Article and Find Full Text PDF

The wrentit (Chamaea fasciata) is a chaparral and scrub specialist bird found from coastal Oregon to northern Baja California. We generated a draft reference assembly for the species using PacBio HiFi long read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 1342 scaffolds totaling 1.

View Article and Find Full Text PDF

To uncover molecular determinants of motor neuron degeneration and selective vulnerability in amyotrophic lateral sclerosis (ALS), we generated longitudinal single-nucleus transcriptomes and chromatin accessibility profiles of spinal motor neurons from the SOD1-G93A ALS mouse model. Vulnerable alpha motor neurons showed thousands of molecular changes, marking a transition into a novel cell state we named 'disease-associated motor neurons' (DAMNs). We identified transcription factor regulatory networks that govern how healthy cells transition into DAMNs as well as those linked to vulnerable and resistant motor neuron subtypes.

View Article and Find Full Text PDF

How genomic changes translate into organismal novelties is often confounded by the multi-layered nature of genome architecture and the long evolutionary timescales over which molecular changes accumulate. Coleoid cephalopods (squid, cuttlefish, and octopus) provide a unique system to study these processes due to a large-scale chromosomal rearrangement in the coleoid ancestor that resulted in highly modified karyotypes, followed by lineage-specific fusions, translocations, and repeat expansions. How these events have shaped gene regulatory patterns underlying the evolution of coleoid innovations, including their large and elaborately structured nervous systems, novel organs, and complex behaviours, remains poorly understood.

View Article and Find Full Text PDF