Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-oxygen-containing branched side chains are designed and used to solubilize n-type copolymers consisting of BDF (benzodifuranone), isatin, and thiophene-based units. We present a simple synthetic approach to side chains with varying linker distances between the backbone and the branching point. The synthetic pathway is straightforward and modular and starts with commercially available reagents. The side chains give rise to excellent solubilities of BDF-thiophene copolymers of up to 90 mg/mL, while still being moderate in size (26-34 atoms large). The excellent solubility furthermore allows high molar mass materials. BDF-thiophene copolymers are characterized in terms of optoelectronic and thermoelectric properties. The electrical conductivity of chemically doped polymers is found to scale with molar mass, reaching ∼1 S/cm for the highest molar mass and longest backbone-branching point distance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788869PMC
http://dx.doi.org/10.1021/acsapm.3c02137DOI Listing

Publication Analysis

Top Keywords

side chains
16
molar mass
12
single-oxygen-containing branched
8
branched side
8
bdf-thiophene copolymers
8
solubilizing benzodifuranone-based
4
benzodifuranone-based conjugated
4
copolymers
4
conjugated copolymers
4
copolymers single-oxygen-containing
4

Similar Publications

Hydrophobic Tag-Assisted Liquid-Phase Synthesis of Tirzepatide.

Org Lett

September 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

The synthesis of tirzepatide relies heavily on solid phase peptide synthesis (SPPS), a process that is both costly and time-consuming. In this paper, a novel soluble liquid-phase assisted (LPPS) strategy for the efficient synthesis of tirzepatide is presented. The efficacy of the method is based on the distinct solubility properties of the soluble tag, which enables high yield synthesis while significantly reducing wastage of amino acids and solvents.

View Article and Find Full Text PDF

Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.

View Article and Find Full Text PDF

The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.

View Article and Find Full Text PDF

Motivated by copper's essential role in biology and its wide range of applications in catalytic and synthetic chemistry, this work aims to understand the effect of heteroatom substitution on the overall stability and reactivity of biomimetic Cu(II)-alkylperoxo complexes. In particular, we designed a series of tetracoordinated ligand frameworks based on iso-BPMEN = (,-bis(2-pyridylmethyl)-','-dimethylethane-1,2-diamine) with varying the primary coordination sphere using different donor atoms (N, O, or S) bound to Cu(II). The copper(II) complexes bearing iso-BPMEN and their modified heteroatom-substituted ligands were synthesized and structurally characterized.

View Article and Find Full Text PDF

Mechanistic analysis of lignocellulosic biomass saccharification by the filamentous fungus Talaromyces cellulolyticus.

Biosci Biotechnol Biochem

September 2025

Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan.

Lignocellulosic biomass is a carbon-neutral resource crucial to advancing a bio-based economy. The filamentous fungus Talaromyces cellulolyticus demonstrates superior biomass saccharification efficiency compared to conventional enzyme-producing fungi, making it a promising host for enzymatic biomass conversion. To enable molecular studies, we developed a robust genetic transformation system for T.

View Article and Find Full Text PDF