98%
921
2 minutes
20
This study aimed to evaluate the in silico and in vitro inhibitory effect of the combined use of galantamine (GAL) and donepezil (DON) against acetylcholinesterase and butyrylcholinesterase (BuChE) enzymes. In silico and in vitro cholinesterase analysis were carried out for GAL and DON alone and combined. Molecular modeling studies were carried out (docking analysis, molecular dynamics simulation, and quantum theory of atoms in molecules). Cholinesterase's inhibitory activities by modified Ellman's method and the drug combination effect using the Chou-Talalay method were assayed. GAL/DON combination showed the co-occupancy of the ligands in both enzymes through in silico studies. Regarding in vitro BuChE inhibition analyses, three of five combinations showed an interaction between GAL and DON at the threshold of additive affect (0.9 < CI < 1.1), with a tendency toward a synergistic effect for higher concentrations. This is the first report showing the efficacy of the GAL/DON combinations inhibiting BuChE, showing the importance of analyzing the behavior of different ligands when co-occupancy into the active site is possible. These combinations might be a possible therapy to improved efficacy, reduced doses, minor side effects, and high levels of the neurotransmitter in the synaptic space for Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.202300581 | DOI Listing |
Bioorg Chem
September 2025
Post Graduate and Research Department of Botany, A.V.V.M. Sri Pushpam College (Affiliated to Bharathidasan University), Poondi 613 503, Thanjavur, India. Electronic address:
The research employed zirconyl oxychloride as a catalyst in a reaction involving pyrazole aldehyde, (thio)urea, and acetyl acetone to establish an aqueous approach for synthesizing 3,4-dihydropyrimidinone derivatives (compounds 4a-j) with potential claims as antidiabetic agents. FT-IR, HR-MS, H NMR and C NMR were employed to analyze the synthesized compounds. The HOMO-LUMO analysis was performed to evaluate the stability of the synthesized derivatives.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Biology, Faculty of Science, Selçuk University, Konya, Turkey.
Hippophae salicifolia, commonly known as sea buckthorn, is native to the Indian Himalayan region. This study is the first to comprehensively assess the phytochemical profile and biological activities of H. salicifolia leaves extracted through maceration, infusion, and percolation (Soxhlet apparatus) methods.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
In ultrasound imaging, propagation of an acoustic wavefront through heterogeneous media causes phase aberrations that degrade the coherence of the reflected wavefront, leading to reduced image resolution and contrast. Adaptive imaging techniques attempt to correct this phase aberration and restore coherence, leading to improved focusing of the image. We propose an autofocusing paradigm for aberration correction in ultrasound imaging by fitting an acoustic velocity field to pressure measurements, via optimization of the common midpoint phase error (CMPE), using a straight-ray wave propagation model for beamforming in diffusely scattering media.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
School of Natural Sciences, Macquarie University Sydney, Macquarie Park, NSW, Australia.
PLoS One
September 2025
Department of Zoology, Baba Guru Nanak University, Nankana Sahib, Pakistan.
Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.
View Article and Find Full Text PDF