Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

mRNA export is an essential pathway for the regulation of gene expression. In humans, closely related RNA helicases, UAP56 and URH49, shape selective mRNA export pathways through the formation of distinct complexes, known as apo-TREX and apo-AREX complexes, and their subsequent remodeling into similar ATP-bound complexes. Therefore, defining the unidentified components of the apo-AREX complex and elucidating the molecular mechanisms underlying the formation of distinct apo-complexes is key to understanding their functional divergence. In this study, we identify additional apo-AREX components physically and functionally associated with URH49. Furthermore, by comparing the structures of UAP56 and URH49 and performing an integrated analysis of their chimeric mutants, we exhibit unique structural features that would contribute to the formation of their respective complexes. This study provides insights into the specific structural and functional diversification of these two helicases that diverged from the common ancestral gene Sub2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789772PMC
http://dx.doi.org/10.1038/s41467-023-44217-8DOI Listing

Publication Analysis

Top Keywords

uap56 urh49
12
closely rna
8
rna helicases
8
helicases uap56
8
mrna export
8
formation distinct
8
structural differences
4
differences closely
4
urh49
4
urh49 fashion
4

Similar Publications

RNA helicases are involved in RNA metabolism in an ATP-dependent manner. Although many RNA helicases unwind the RNA structure and/or remove proteins from the RNA, some can load their interacting proteins onto RNAs. Here, we developed an in vitro strategy to identify the ATP-dependent factors involved in spliceosomal uridine-rich small nuclear RNA (U snRNA) export.

View Article and Find Full Text PDF

Critical Cellular Functions and Mechanisms of Action of the RNA Helicase UAP56.

J Mol Biol

June 2024

Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA. Electronic address:

Posttranscriptional maturation and export from the nucleus to the cytoplasm are essential steps in the normal processing of many cellular RNAs. The RNA helicase UAP56 (U2AF associated protein 56; also known as DDX39B) has emerged as a critical player in facilitating and co-transcriptionally linking these steps. Originally identified as a helicase involved in pre-mRNA splicing, UAP56 has been shown to facilitate formation of the A complex during spliceosome assembly.

View Article and Find Full Text PDF

Terminal regions of UAP56 and URH49 are required for their distinct complex formation functioning to an essential role in mRNA processing and export.

Biochem Biophys Res Commun

April 2024

Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, 606-8502, Japan; Department of Food Science and Nutrition, Faculty of Agriculture Kindai University, Nara, Nara, 631-8505, Japan; Department of Applied Biological Chemistry, Graduate School of Agricu

UAP56 and URH49 are closely related RNA helicases that function in selective mRNA processing and export pathways to fine-tune gene expression through distinct complex formations. The complex formation of UAP56 and URH49 is believed to play a crucial role in regulating target mRNAs. However, the mechanisms underlying this complex formation have not been fully elucidated.

View Article and Find Full Text PDF

mRNA export is an essential pathway for the regulation of gene expression. In humans, closely related RNA helicases, UAP56 and URH49, shape selective mRNA export pathways through the formation of distinct complexes, known as apo-TREX and apo-AREX complexes, and their subsequent remodeling into similar ATP-bound complexes. Therefore, defining the unidentified components of the apo-AREX complex and elucidating the molecular mechanisms underlying the formation of distinct apo-complexes is key to understanding their functional divergence.

View Article and Find Full Text PDF

During spliceosome assembly, interactions that bring the 5' and 3' ends of an intron in proximity are critical for the production of mature mRNA. Here, we report synergistic roles for the stem-loops 3 (SL3) and 4 (SL4) of the human U1 small nuclear RNA (snRNA) in maintaining the optimal U1 snRNP function, and formation of cross-intron contact with the U2 snRNP. We find that SL3 and SL4 bind distinct spliceosomal proteins and combining a U1 snRNA activity assay with siRNA-mediated knockdown, we demonstrate that SL3 and SL4 act through the RNA helicase UAP56 and the U2 protein SF3A1, respectively.

View Article and Find Full Text PDF