Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We established a size separation method for silica nanoparticles (SiNPs) measuring 10, 30, 50, 70, and 100 nm in diameter using asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry (AF4-ICP-MS), and evaluated the cytotoxicity of SiNPs in human hepatoma HepG2 cells. Analysis of the mixture sample revealed that nanoparticles of different sizes were eluted at approximately 2-min intervals, with no effect on each elution time or percentage recovery. Compared with larger SiNPs, smaller SiNPs exhibited high cytotoxicity when the volume of SiNPs exposed to the cells was the same. We measured SiNPs in culture medium and inside cells by AF4-ICP-MS and found that approximately 17% of SiNPs in the mixture of five differently sized particles were absorbed by the cells. Transmission electron microscopy revealed that 10 nm SiNPs formed aggregates and accumulated in the cells. Based on AF4-ICP-MS analysis, there is no clear difference in the particle volume absorbed by the cells among different sizes. Therefore, the high toxicity of small SiNPs can be explained by the fact that their large surface area relative to particle volume efficiently induces toxicological influences. Indeed, the large surface area of 10 nm SiNPs significantly contributed to the production of reactive oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-023-03672-4DOI Listing

Publication Analysis

Top Keywords

sinps
10
silica nanoparticles
8
asymmetric flow
8
flow field
8
field flow
8
flow fractionation
8
mass spectrometry
8
hepg2 cells
8
absorbed cells
8
10 nm sinps
8

Similar Publications

Sleep deprivation (SD) and exposure to engineered nanomaterials such as silica nanoparticles (SiNPs) are emerging risk factors for ocular surface disorders, particularly dry eye disease. However, the molecular mechanisms underlying their combined impact on lacrimal gland function remain unclear. In this study, we investigated the synergistic effects of SD and SiNPs exposure on circadian regulation, oxidative stress, inflammation, and structural integrity of the extraorbital lacrimal glands (ELGs) in C57BL/6J mice.

View Article and Find Full Text PDF

The rising global energy demand strongly associates over global warming, and prompt environmental changes have determined researchers to investigate and identify alternative fuels as sustainable and eco-friendly solutions. The aim of the current study is to investigate the performance, and emission characteristics of an engine using water diesel emulsified fuel (WDEF) adopting SiO nanoparticle. The fuel blend D94W5S1-Si50, comprising of 94% diesel, 5% water, 1% SPAN 80, and 50 ppm silicon nanoparticles (SiNPs) is selected for test fuel and explored the simultaneous effects of different input parameters such as injection pressure, injection timing, and engine load on engine performance and emission attributes without engine modification or experiencing added costs.

View Article and Find Full Text PDF

Tomato fruit () is a valuable agricultural crop worldwide due to its nutritional value and culinary applications, making it one of the most widely consumed vegetables in the human diet. However, excessive solar UV-B radiation represents a significant factor in decreasing productivity, marketable yields, and fruit quality in tomato crops by causing damage to both DNA and the photosynthetic system, as well as chlorophyll degradation. The application of silicon nanoparticles has been shown to increase tolerance to abiotic stressors, including enhanced UV-B radiation.

View Article and Find Full Text PDF

Next-generation Mesoporous Silica Nanoparticles: Precision-engineered Platforms for Ovarian Cancer Therapy.

Curr Drug Res Rev

August 2025

Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University, Sector 125, Noida, Uttar Pradesh, India.

Silica nanoparticles (SiNPs) with antifouling properties offer a promising approach for enhancing ovarian cancer (OC) therapy. OC remains one of the deadliest gynecological malignancies due to late-stage diagnosis, high recurrence rates, and limited treatment efficacy. Conventional therapies, such as chemotherapy, often face challenges due to drug resistance and limited targeting ability.

View Article and Find Full Text PDF

Dodder (Cuscuta planiflora) is a major parasitic plant species affecting the productivity of Egyptian clover (Trifolium alexandrinum L.), an important forage crop in Egypt. A field trial was executed on Egyptian clover heavily infested with dodder during the winter seasons of 2021/2022 and 2022/2023.

View Article and Find Full Text PDF