98%
921
2 minutes
20
Layered lead halide perovskites have attracted much attention as promising materials for a new generation of optoelectronic devices. To make progress in applications, a full understanding of the basic properties is essential. Here, we study 2D-layered (BA)PbX by using different halide anions (X = I, Br, and Cl) along with quantum confinement. The obtained cell parameter evolution, supported by experimental measurements and theoretical calculations, indicates strong lattice distortions of the metal halide octahedra, breaking the local inversion symmetry in (BA)PbCl, which strongly correlates with a pronounced Rashba spin-splitting effect. Optical measurements reveal strong photoluminescence quenching and a drastic reduction in the PL quantum yield in this larger band gap compound. We suggest that these optical results are closely related to the appearance of the Rashba effect due to the existence of a local electric dipole. The results obtained in ab initio calculations showed that the (BA)PbCl possesses electrical polarization of 0.13 μC/cm and spin-splitting energy of about 40 meV. Our work establishes that local octahedra distortions induce Rashba spin splitting, which explains why obtaining UV-emitting materials with high PLQY is a big challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c16541 | DOI Listing |
Nano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda 669-1330, Japan.
Monolayer Janus transition-metal dichalcogenides possess Ising- and Rashba-type spin-orbit-couplings (SOC), leading to intriguing spin splitting effects at K and K', and around Γ points across the wide energy range. Using first-principles calculations, we unveil these SOC characteristics in metallic Janus NbSSe and demonstrate its potential for optically controlled spin current generation. On the basis of the symmetry of the system, we show that different linear polarized light can selectively drive spin currents of distinct spin components.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States.
Tuning the exciton fine structure of lead halide perovskites to brighten the dark excitonic ground state is crucial for enhancing their optoelectronic performance. While Rashba splitting is linked to dark-to-light exciton flipping, the specific nature of this phenomenon remains unclear. Here, we systematically studied 18 CsPbBr structures, representing 2D systems of CsPbBr with varying degrees of distortion, using density functional theory (DFT) and the Model-Bethe-Salpeter Equation (m-BSE).
View Article and Find Full Text PDFJ Chem Phys
August 2025
School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
Three-dimensional lead halide perovskites (3D LHPs) exhibit giant Rashba spin-orbit coupling (SOC) due to their inherent lattice asymmetry and heavy-metal composition; yet, the impact of Rashba SOC on the luminescence dynamic of 3D LHPs remains debated. Here, we utilize the magneto-photoluminescence (Magneto-PL) effects as an effective tool to reveal the underlying spin-related opto-physical process in 3D LHPs. We find that the magneto-PL effects of 3D LHPs CH3NH3Pb(Br/I/IxCl1-x)3 thin films are negative and tunable at room temperature, indicating the remarkable suppression of their PL emission intensity by magnetic fields.
View Article and Find Full Text PDFNano Lett
September 2025
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom.
Metal-organic molecule interfaces have given rise to a wide range of magnetic phenomena. These effects arise due to spin-polarized charge transfer and enhanced exchange interaction at metallo-molecular hybridization sites, where tunability via electric fields beyond ferroelectric interfaces remains to be demonstrated. Here, we explore manipulating the magnetism of cobalt with the intrinsic electric field generated at C/phthalocyanine heterojunctions, a combination commonly used in organic photovoltaics.
View Article and Find Full Text PDF