Quantifying the consequences of unsustainable sand mining and cascade dams on aspects in a tropical river basin.

Sci Rep

Water Resource Center, Disaster Prevention Research Institute (DPRI), Kyoto University, Kyoto, 611-0011, Japan.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human interventions at the river basin scale, such as sand mining and hydropower dam construction, have profoundly affected hydrological and hydraulic alteration regimes, sediment budgets, and morphological changes worldwide. Quantifying the consequences of unsustainable ongoing sand mining and hydropower is crucial for obtaining sediment load data and managing hydrogeomorphology. In this study, comprehensive long-term consecutive four-field monitoring, statistical methods, and hydrological models (SWAT) were applied to quantify the spatiotemporal changes in long-term discharge and sediment load from 1996 to 2020 for the tropical river of the Vu Gia Thu Bon (VGTB) in the central region of Vietnam. The SWAT model was calibrated from 1996 to 2010, validated from 2011 to 2020 and showed good performance for daily discharge and monthly sediment. The evolution of river bathymetric data (2010, 2015, 2018, and 2021) was analysed to clarify the upstream sediment supply trapped in the riverbed and how the sand mining volume was removed. The results showed that the mean annual sediment in the Vu Gia and Thu Bon Rivers decreased by 57.3% and 23.8%, respectively, in the postdam period compared with the predam period. The thalweg elevation decreased at the Ai Nghia and Giao Thuy stations from 2010 to 2021 by 1.8 m and 3.9 m, respectively. The water level decreased by 21.1% at Ai Nghia and 44.3% at Giao Thuy. Dam development, sand mining, and changes in land use are the main factors responsible for flow discharge and sediment morphodynamic alterations. Morphological change have increased the water transfer rate from the Vu Gia River to the Thu Bon River through the Quang Hue channel. Downstream of the Vu Gia River, water transfer and riverbed incision have decreased flow discharge and water level and increased saltwater intrusion in recent years. As a result, water shortages induced by saltwater intrusion during drought periods have emerged as a significant constraint in hindering the domestic water supply and agricultural production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786850PMC
http://dx.doi.org/10.1038/s41598-024-51405-zDOI Listing

Publication Analysis

Top Keywords

sand mining
20
thu bon
12
quantifying consequences
8
consequences unsustainable
8
tropical river
8
river basin
8
mining hydropower
8
sediment load
8
discharge sediment
8
gia thu
8

Similar Publications

Occupational exposure to respirable crystalline silica (RCS) remains a significant health concern in metal and nonmetal (MNM) mining operations, contributing to the development of silicosis, lung cancer, and other chronic respiratory conditions. This review examines the prevalence and effects of RCS exposure in MNM mining environments, the toxicity of silica dust, and the effectiveness of regulatory interventions aimed at controlling exposure and mitigating health hazards. Key factors influencing RCS concentrations, including mine type, size, and geographic location, are analyzed, with particular focus on the impact of recent regulatory updates from the Mine Safety and Health Administration (MSHA).

View Article and Find Full Text PDF

In-situ microemulsion has shown great potential for remediation of dense non-aqueous phase liquids (DNAPLs) contaminated aquifers due to the capacity to enhance DNAPL solubility and mobility. Understanding the pore-scale removal behavior of DNAPL and quantifying proportions of mobilization/solubilization in flushing process are essential to improve remediation efficiency. However, owing to the opacity of aquifer medium, the sand columns commonly used in flushing experiments are hard to reveal the dynamic behaviors and removal mechanism of DNAPLs in aquifer by in-situ microemulsion.

View Article and Find Full Text PDF

Recession analysis of the rear seabed topography due to excavation of marine sand based on the concept of equi-wave phase potential.

Sci Total Environ

September 2025

Graduate School of Water Resources, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeongi-do 16419, Republic of Korea. Electronic address:

Globally, increasing coastal erosion-including background erosion due to rising sea levels-has become a serious environmental concern. One common mitigation strategy is the artificial supply of sand to the coast through marine sand mining (MSM). However, to ensure its effectiveness, there is an urgent need for corresponding erosion assessments.

View Article and Find Full Text PDF

Surface mining and bitumen extraction in Alberta's oil sands generates various tailings waste streams as by-products. Among these tailings, froth treatment tailings (FTT), originating from the froth treatment process, are particularly complex due to high levels of iron sulfide minerals (i.e.

View Article and Find Full Text PDF

This study investigates the performance of Distributed Acoustic Sensing (DAS) for detecting gas pipeline leaks under controlled experimental conditions, using multiple fiber cable types deployed both internally and externally. A 21 m steel pipeline with a 1 m test section was configured to simulate leakage scenarios with varying leak sizes (¼", ½", ¾", and 1"), orientations (top, side, bottom), and flow velocities (2-18 m/s). Experiments were conducted under two installation conditions: a supported pipeline mounted on tripods, and a buried pipeline laid on the ground and covered with sand.

View Article and Find Full Text PDF