98%
921
2 minutes
20
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing antibodies (NAbs) lack cross-reactivity between SARS-CoV species and variants and fail to mediate long-term protection against infection. The maintained protection against severe disease and death by vaccination suggests a role for cross-reactive T cells. We generated vaccines containing sequences from the spike or receptor binding domain, the membrane and/or nucleoprotein that induced only T cells, or T cells and NAbs, to understand their individual roles. In three models with homologous or heterologous challenge, high levels of vaccine-induced SARS-CoV-2 NAbs protected against neither infection nor mild histological disease but conferred rapid viral control limiting the histological damage. With no or low levels of NAbs, vaccine-primed T cells, in mice mainly CD8 T cells, partially controlled viral replication and promoted NAb recall responses. T cells failed to protect against histological damage, presumably because of viral spread and subsequent T cell-mediated killing. Neither vaccine- nor infection-induced NAbs seem to provide long-lasting protective immunity against SARS-CoV-2. Thus, a more realistic approach for universal SARS-CoV-2 vaccines should be to aim for broadly cross-reactive NAbs in combination with long-lasting highly cross-reactive T cells. Long-lived cross-reactive T cells are likely key to prevent severe disease and fatalities during current and future pandemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862018 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2024.01.007 | DOI Listing |
J Immunother Cancer
February 2025
Enterome, Paris, Île-de-France, France
Background: Molecular mimicry between commensal bacterial antigens and tumor-associated antigens (TAAs) has shown potential in enhancing antitumor immune responses. This study leveraged this concept using commensal bacterial antigens, termed OncoMimics, to induce TAA-derived peptide (TAAp)-specific cross-reactive cytotoxic T cells and improve the efficacy of peptide-based immunotherapies.
Methods: The discovery of OncoMimics primarily relied on a bioinformatics approach to identify commensal bacteria-derived peptide sequences mimicking TAAps.
Front Immunol
January 2025
Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.
View Article and Find Full Text PDFFront Immunol
July 2024
Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
Cancer Res
October 2023
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
The ability of T-cell receptors (TCR) to recognize tumor-associated antigens (TAA) is a key driver of adoptive transfer of tumor-infiltrating lymphocyte (TIL) T cells, which can be a highly effective cancer immunotherapy. While it is common knowledge that TCRs are cross-reactive and can bind multiple different peptide antigens, this is typically considered an unattractive feature and limitation for TCR-based therapies. In a recent publication in Cell, Dolton and colleagues discover that certain TCRs, isolated from TILs used for successful treatment of melanoma, possess beneficial cross-reactivity by recognizing multiple TAA.
View Article and Find Full Text PDFiScience
January 2023
Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals.
View Article and Find Full Text PDF