98%
921
2 minutes
20
Natural and sustainable anti-aging ingredients have gained attention from the cosmetic industry. This study evaluated the anti-aging potential of a sugarcane straw extract-based (SSE) cosmetic ingredient. First, cytotoxicity tests were assessed in keratinocytes and fibroblast cell lines, and sensitization was carried out through the direct peptide reactivity assay. Subsequently, various anti-aging properties were investigated, including inhibiting skin aging-related enzymes, promoting elastin and hyaluronic acid synthesis, and anti-pollution activity. Finally, a permeability assay using a synthetic membrane resembling skin was conducted. The results demonstrated that the SSE ingredient effectively inhibited elastase (55%), collagenase (25%), and tyrosinase (47%) while promoting hyaluronic acid production at non-cytotoxic and low-sensitizer concentrations. Moreover, it reduced the inflammatory response provoked by urban pollution, as evidenced by decreased levels of IL1-α and IL-6. However, it was observed that the phenolic compounds predominantly reached the skin's surface, indicating a limited ability to penetrate deeper layers of the skin. Therefore, it can be concluded that the SSE ingredient holds anti-aging properties, albeit with limited penetration into deeper skin layers. Further research and formulation advancements are needed to optimize the ingredient's ability to reach and exert its effects in deeper skin layers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10778757 | PMC |
http://dx.doi.org/10.3390/ijms25010021 | DOI Listing |
Food Funct
September 2025
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
Ergothioneine (EGT) is a naturally occurring thiol-containing amino acid derivative synthesized by certain fungi and bacteria, with humans acquiring it exclusively through dietary intake. It has gained increasing attention due to its exceptional antioxidant, cytoprotective, and metal-chelating properties. EGT shows high stability under physiological conditions and can accumulate in specific tissues the highly selective transporter OCTN1.
View Article and Find Full Text PDFFood Funct
September 2025
Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan, China.
Neomangiferin (NG) is an active ingredient extracted from mango, recognized for its antioxidant potential. However, its anti-aging efficacy remains largely unexplored. This study employed () to evaluate the anti-aging activity of NG and investigate the corresponding molecular mechanism.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9-40138, Bologna, Italy.
NT-proBNP levels increase exponentially with age and are associated with cardiovascular and all-cause mortality. From NT-proBNP concentration a surrogate for biological age ("proBNPage") can be obtained. The primary objective of this study was to define a method to design future trials on anti-aging treatments using proBNPage.
View Article and Find Full Text PDFBiogerontology
September 2025
School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
Ashwagandha (Withania somnifera), a revered herb in Ayurvedic medicine, has gained significant scientific recognition for its potential to promote healthy aging. Traditionally used as a Rasayana or rejuvenator, this potent adaptogen helps the body manage stress and enhance vitality. This review synthesises extensive evidence for its multifaceted anti-aging capabilities, which target key hallmarks of the aging process.
View Article and Find Full Text PDFJ Biotechnol
September 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO. 1, Wenyuan Road, Nanjing 210023, People's Republic of China. Electronic address:
Cycloastragenol (CA), the triterpenoid aglycone of astragaloside (ASI), is a telomerase activator and potential anti-aging drug with broad application prospects. Due to the rapid increase of its market demand in recent years, efficient production of CA has attracted increasing attention. In this study, the novel β-xylosidase XylO2 from Aspergillus aculeatus was identified through genome mining.
View Article and Find Full Text PDF