Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The two-step layer-by-layer (LBL) deposition of donor and acceptor films enables desired vertical phase separation and high performance in organic solar cells (OSCs), which becomes a promising technology for large-scale printing devices. However, limitations including the use of toxic solvents and unpredictable infiltration between donor and acceptor still hinder the commercial production of LBL OSCs. Herein, we developed a water-based nanoparticle (NP) ink containing donor polymer to construct a mesoscale structure that could be infiltrated with an acceptor solution. Using non-halogen o-xylene for acceptor deposition, the LBL strategy with a mesoscale structure delivered outstanding efficiencies of 18.5% for binary PM6:L8-BObased LBL OSCs. Enhanced charge carrier mobility and restricted trap states were observed in the meso-LBL devices with optimized vertical morphology. It is believed that the findings in this work will bring about more research interest and effort on eco-friendly processing in preparation for the industrial production of OSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10780782PMC
http://dx.doi.org/10.3390/polym16010091DOI Listing

Publication Analysis

Top Keywords

mesoscale structure
12
organic solar
8
solar cells
8
donor acceptor
8
lbl oscs
8
water-processed mesoscale
4
structure enables
4
enables 185%
4
185% efficient
4
efficient binary
4

Similar Publications

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.

View Article and Find Full Text PDF

The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.

View Article and Find Full Text PDF

The electrocatalytic acetylene semi-hydrogenation (EASH) driven by renewable energy offers an important non-petroleum route for ethylene production, yet suffers from insufficient reaction rate, ethylene selectivity, and energy efficiency. While tailoring catalytically active structures is effective for improving the EASH performance, the effects of mass transport at the mesoscale are poorly understood. Here, we show quantitatively the crucial role of interparticle mass transport within the catalyst layer of a gas diffusion electrode.

View Article and Find Full Text PDF

What are chromatin fiber topologies for regular nucleosome linker spacing? The influence of 10n and 10n+5 linker lengths explored by mesoscale modeling.

Biophys J

September 2025

Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 U.S.A; New York University-East China Normal University Center for Computational Ch

The structural organization of chromatin is intricately influenced by the length of linker DNA connecting nucleosomes. Some studies have suggested that preferred linker lengths include 10n and 10n+5 base pairs values (n = integer). Because these lengths dictate the rotational orientation of successive nucleosomes in the fiber axis, they can markedly affect chromatin fiber compaction and topology.

View Article and Find Full Text PDF