98%
921
2 minutes
20
Plant and pollinator communities are vital for transnational food chains. Like many natural systems, they are affected by global change: rapidly deteriorating conditions threaten their numbers. Previous theoretical studies identified the potential for community-wide collapse above critical levels of environmental stressors-so-called bifurcation-induced tipping points. Fortunately, even as conditions deteriorate, individuals have some adaptive capacity, potentially increasing the boundary for a safe operating space where changes in ecological processes are reversible. Our study considers this adaptive capacity of pollinators to resource availability and identifies a new threat to disturbed pollinator communities. We model the adaptive foraging of pollinators in changing environments. Pollinator's adaptive foraging alters the dynamical responses of species, to the advantage of some-typically generalists-and the disadvantage of others, with systematic non-linear and non-monotonic effects on the abundance of particular species. We show that, in addition to the extent of environmental stress, the pace of change of environmental stress can also lead to the early collapse of both adaptive and nonadaptive pollinator communities. Specifically, perturbed communities exhibit rate-induced tipping points at stress levels within the safe boundary defined for constant stressors. With adaptive foraging, tipping is a more asynchronous collapse of species compared to nonadaptive pollinator communities, meaning that not all pollinator species reach a tipping event simultaneously. These results suggest that it is essential to consider the adaptive capacity of pollinator communities for monitoring and conservation. Both the extent and the rate of stress change relative to the ability of communities to recover are critical environmental boundaries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802948 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1011762 | DOI Listing |
Proteomics
September 2025
Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.
View Article and Find Full Text PDFEcology
September 2025
Red de Interacciones Multitróficas, Instituto de Ecología A. C., Xalapa, Veracruz, México.
Extrafloral nectaries (EFNs) are specialized plant glands that secrete nectar but are not related to pollination. Several ants feed on EFNs and, in exchange, they often attack herbivores, reducing the consumption of leaf tissue and floral parts, and enhancing plant performance. Although most empirical studies and reviews have demonstrated that ant visitation benefits EFN-bearing plants, many others have failed to show ants as protective partners.
View Article and Find Full Text PDFWild bee communities in urban ecosystems are often challenged by habitat fragmentation and low floral diversity. In such settings, marginal land surrounding airports or in power line corridors may support bees, even with small habitat patches. However, temporal surveys of wild bees are lacking for many urban areas such as the Puget Sound region of western Washington State, USA.
View Article and Find Full Text PDFProc Biol Sci
August 2025
Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60022, USA.
Food underpins fitness and ecological interactions, yet how nutrient availability shapes species interactions in natural communities remains poorly understood. Most nutritional ecology research focuses on laboratory or single-species systems, limiting insight into how nutrient use and nutrient niche dynamics occur in complex, multispecies assemblages in the wild. We combined long-term plant-pollinator interaction data with pollen macronutrient analyses to examine how wild bumble bees exploit macronutrients and whether they occupy distinct nutrient niches.
View Article and Find Full Text PDFNew Phytol
August 2025
Department of Environmental Systems Science, ETH Zürich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland.
Aromatic plants occur in many plant lineages and have widespread ethnobiological significance. Yet, the ecological significance and evolutionary origins of aromatic volatile emissions remain uncertain. Aromatic emissions have been implicated in defensive interactions but may also have other important functions.
View Article and Find Full Text PDF