Coadministration of Lactulose with Probiotics Ameliorates Loperamide-Induced Constipation in Mice.

Prev Nutr Food Sci

Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We evaluated the efficacy of mixtures of lactulose with probiotic strains to ameliorate constipation and to identify suitable probiotic strains. Constipation was induced in Institute of Cancer Research mice (6-week-old, male) by the administering loperamide (5 mg/kg, twice a day) orally for 5 days, whereas the control group was not treated. To evaluate the laxative effects of the lactulose-probiotic and lactulose-magnesium hydroxide mixtures, fecal parameters, the gastrointestinal (GI) transit ratio, and fecal short-chain fatty acid (SCFA) content were analyzed. The administration of lactulose and or significantly improved stool number and water content, which were reduced by loperamide. The GI transit ratio was significantly increased compared with that of the control group. The combined administration of lactulose and probiotics ( or ) increased total SCFA content, including that of acetate, more effectively compared with lactulose alone. Similarly, coadministration of lactulose and magnesium hydroxide improved the loperamide-induced changes in fecal parameters and GI transit as well as increased total SCFA content. Overall, the combination of lactulose and probiotics relieves the symptoms of constipation by increasing SCFA content and is more effective compared with lactulose alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764220PMC
http://dx.doi.org/10.3746/pnf.2023.28.4.427DOI Listing

Publication Analysis

Top Keywords

scfa content
16
lactulose probiotics
12
coadministration lactulose
8
probiotic strains
8
control group
8
fecal parameters
8
transit ratio
8
administration lactulose
8
increased total
8
total scfa
8

Similar Publications

All metazoan guts harbor commensal communities, from a dozen bacterial species in to hundreds in humans. Here, we condition flies with diets containing varying levels of protein and sugar to investigate the impact of dietary history on the interaction between commensal gut bacteria and feeding adaptation in . We find that appetite increases with dietary protein, dependent on total gut bacteria content, and enhanced by a drug that promotes the growth of short-chain fatty acid (SCFA)-producing gut bacteria.

View Article and Find Full Text PDF

Chemotherapy-induced gastrointestinal toxicity is a significant dose-limiting complication for cancer treatment. Disruption of the gastrointestinal (GI) epithelial barrier function by several chemotherapeutic agents results in development of mucositis and diarrhea. Thus, maintaining barrier integrity may be of therapeutic benefit.

View Article and Find Full Text PDF

The complex relationship between the gut microbiome and immune system development during infancy is thought to be a key factor in the rising rates of pediatric allergic diseases. Food protein-induced allergic proctocolitis (AP), the earliest identified form of non-IgE-mediated food allergy in infants, occurs at the mucosal surface where dietary proteins, intestinal microbes, and immune cells directly interact, and increases the risk for life threatening IgE-mediated food allergy, making it an important model for understanding early food allergic disease development. The question of how specific microbial compositions and functional pathways contribute to AP development and progression remains poorly understood.

View Article and Find Full Text PDF

This study evaluated the effect of Mogan large-leaf yellow tea (MG-LYT) on preventing obesity. It was found that cold-brewed yellow tea has stronger anti-obesity effects in high-fat diet (HFD)-induced obese mice than hot-brewed tea, due to its higher content of non-esterified catechins, as shown by metabolomic and high-performance liquid chromatography (HPLC) analysis. Notably, epigallocatechin (EGC), a key non-ester catechin, likely enhances pancreatic lipase inhibition through allosteric modulation, which explains the greater effectiveness of cold-brewed tea.

View Article and Find Full Text PDF

People with obesity tend to have altered functional connectivity of reward-related areas in the brain, contributing to overeating and weight gain. The gut-brain axis may function as a mediating factor, with gut-derived short-chain fatty acids (SCFAs) as possible intermediates in the relationship between microbiota and functional connectivity. We investigated the influence of SCFA turnover on resting state functional connectivity in healthy individuals with extremely high and extremely low levels of intestinal SCFA turnover.

View Article and Find Full Text PDF