Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: In contrast to the dynamics observed in plant/pathogen interactions, endophytic fungi have the capacity to establish enduring associations within their hosts, leading to the development of a mutually beneficial relationship that relies on specialized chemical interactions. Research indicates that the presence of endophytic fungi has the ability to significantly modify the chemical makeup of the host organism. Our hypothesis proposes the existence of a reciprocal exchange of chemical signals between plants and fungi, facilitated by specialized chemical processes that could potentially manifest within the tissues of the host. This research aimed to precisely quantify the portion of the cumulative fungal endophytic community's metabolome detectable within host leaves, and tentatively evaluate its relevance to the host-endophyte interplay. The understory palm Astrocaryum sciophilum (Miq.) Pulle was used as a interesting host plant because of its notable resilience and prolonged life cycle, in a tropical ecosystem.

Method: Using advanced metabolome characterization, including UHPLC-HRMS/MS and molecular networking, the study explored enriched metabolomes of both host leaves and 15 endophytic fungi. The intention was to capture a metabolomic "snapshot" of both host and endophytic community, to achieve a thorough and detailed analysis.

Results And Discussion: This approach yielded an extended MS-based molecular network, integrating diverse metadata for identifying host- and endophyte-derived metabolites. The exploration of such data (>24000 features in positive ionization mode) enabled effective metabolome comparison, yielding insights into cultivable endophyte chemodiversity and occurrence of common metabolites between the holobiont and its fungal communities. Surprisingly, a minor subset of features overlapped between host leaf and fungal samples despite significant plant metabolome enrichment. This indicated that fungal metabolic signatures produced in vitro remain sparingly detectable in the leaf. Several classes of primary metabolites were possibly shared. Specific fungal metabolites and/or compounds of their chemical classes were only occasionally discernible in the leaf, highlighting endophytes partial contribution to the overall holobiont metabolome. To our knowledge, the metabolomic study of a plant host and its microbiome has rarely been performed in such a comprehensive manner. The general analytical strategy proposed in this paper seems well-adapted for any study in the field of microbial- or microbiome-related MS and can be applied to most host-microbe interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768666PMC
http://dx.doi.org/10.3389/fpls.2023.1278745DOI Listing

Publication Analysis

Top Keywords

endophytic fungi
12
host
9
metabolomic study
8
host-microbe interactions
8
specialized chemical
8
host leaves
8
fungal
6
endophytic
5
chemical
5
metabolome
5

Similar Publications

Argemone mexicana is one of the known herbaceous plants hosting bioactive isoquinoline alkaloids. In the current study, an endophytic fungal isolate was studied for anti-inflammatory potential and the identification of its bioactive molecule. An endophytic fungus AMEF-14 was obtained from this plant and identified as Cladosporium ramotenellum based on microscopy and molecular tools.

View Article and Find Full Text PDF

Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.

View Article and Find Full Text PDF

Endophytic Fusarium isolates from Ceratozamia mirandae enhance tomato growth, suppress pathogenic fungi, and induce protection against Botrytis cinerea.

Rev Argent Microbiol

September 2025

IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.

Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).

View Article and Find Full Text PDF

The taxonomic status of two bacterial strains, KW56 and 2063, isolated from root nodules of (Spanish broom), was investigated using a polyphasic approach. Both isolates belong to the genus , yet exhibit significant genotypic and phenotypic differences from all currently described species. Whole-genome comparisons revealed that strain KW56 is most closely related to PETP 02, while strain 2063 is related to strains STM 196 and 29-15.

View Article and Find Full Text PDF

The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using , an endophytic fungus isolated from . The eco-friendly synthesis process employed fungal extracts as reducing and stabilizing agents thereby minimizing the need for hazardous chemicals.

View Article and Find Full Text PDF